FACULTAD DE INGENIERÍA AREA DE METALURGIA Y MATERIALES

Nombre de la materia : CARACTERIZACIÓN DE MATERIALES

Clave de la materia: 6202 Clave CACEI: CI

Nivel del Plan de Estudios: X No. de créditos: 8

Horas/Clase/Semana: 3 Horas totales/Semestre: 48 Horas/Práctica (y/o Laboratorio): 2 Prácticas complementarias: Trabajo extra-clase Horas/Semana: 3

Tipo de materia: Optativa **No. de créditos aprobados:** 315

Fecha última de Revisión Curricular: Mes 04 Año 06

Materia y clave de requisito:

JUSTIFICACION DEL CURSO

Familiarizar al alumno con diversas técnicas utilizadas para realizar la caracterización de materiales así como

conocer los fundamentos teóricos en que se basan dichas técnicas.

OBJETIVO DEL CURSO

Presentar los fundamentos teóricos de diversas técnicas analíticas comúnmente usadas para caracterizar a los materiales. Utilizando los principios básicos, entender la operación de los instrumentos y equipos asociados a estas técnicas, así como el ajuste óptimo de sus parámetros de operación.

Presentar la aplicación práctica de estas técnicas.

CONTENIDO TEMÁTICO

INTRODUCCIÓN

Cristalografía, Diagramas de Fase y Microestructuras.
 3 horas.

Objetivo: Se le dará al alumno los fundamentos teóricos en que se apoyan las técnicas de caracterización.

- 1.1.Fundamentos de cristalografía
- 1.2. Clasificación de Pearson y Strukturbericht
- 1.3. Diagramas de fase
- 1.4. Determinación de diagramas de fase.
- 2. Resúmenes de Métodos Analíticos.
 2 horas.
 Objetivo: El alumno tendrá un panorama global de los alcances y aplicaciones de las técnicas de caracterización.
 - 1. Espectrometría de absorción atómica.
 - 2. Espectrometría de Rayos X.
 - 3. Espectroscopia de absorción ultravioleta/visible.
 - 4. Espectroscopia infrarroja.
 - 5. Espectroscopia Raman.
 - 6. Espectroscopia electrónica Auger.
 - 7. Espectroscopia Mösbauer.
 - 8. Resonancia magnética nuclear.
 - 9. Análisis de imágenes.
 - 10. Metalografía óptica.
 - 11. Difracción de Rayos X en polvos.
 - 12. Difracción de Rayos X en monocristales.
 - 13. Microscopio electrónico de transmisión.
 - 14. Microscopio electrónico de barrido y Microsonda.
 - 15. Combustión de alta temperatura (carbonómetro y azufrómetro).

- 16. Análisis térmico diferencial.
- 17. Termogravimetría.
- 18. Calorimetría diferencial de barrido.
- 3. Difracción de rayos X. 15 horas. Objetivo: El alumno conocerá los fundamentos y aplicaciones de la difracción de rayos X para la caracterización de materiales cristalinos.
- 3.1 Producción y propiedades de los rayos X.
 - 3.1.1. Origen. Espectro continuo y espectro característico.
 - 3.1.2. Absorción y fluorescencia.
 - 3.1.3. Fuentes para generar rayos X.
 - 3.1.4. Producción de radiación monocromática.
 - 3.1.5. Detección de rayos X.
- 3.2. Teoría de difracción.
 - 3.2.1. Dispersión de rayos X por electrones, átomos y celdas.
 - 3.2.2. Lev de Bragg.
 - 3.2.3. Intensidad de picos de difracción y factores que la afectan.
 - 3.2.4. Cálculo de factor de estructura.
 - 3.2.5. Cálculo de patrones de difracción.
- 3.3. Métodos experimentales.
 - 3.3.1 Preparación de muestras
 - 3.3.2. Métodos de cámara.
 - 3.3.3. Difractómetro de polvo.
 - 3.3.4. Adquisición de datos de difracción.

- 3.4. Aplicaciones.
 - 3.4.1. Determinación de parámetros de red y estructura cristalina.
 - 3.4.2. Identificación de fases (análisis cualitativo).
 - 3.4.3. Análisis cuantitativo de fases.
- 4. Técnicas Metalográficas. 3 horas. Objetivo: El alumno aprenderá a asociar características microestructurales con propiedades y problemas en materiales metálicos.
 - 4.1. Microscopía óptica.
 - 4.2. Análisis de imagen.
- 5. Microscopía electrónica y microanálisis. 15 horas. Objetivo: El alumno conocerá los fundamentos de formación de imágenes en microscopía electrónica, así como el del microanálisis químico.
- 5.1. Interacción haz de electrones-muestra.
 - 5.1.1. Dispersión elástica e inelástica.
 - 5.1.2. Electrones secundarios, retrodispersados y Auger.
 - 5.1.3. Rayos X característicos.
 - 5.1.4. Volumen de interacción
- 5.2. Microscopio electrónico de barrido (MEB).
 - 5.2.1. Componentes principales de un MEB.
 - 5.2.2. Cañón de electrones, sistema de lentes , detectores.
 - 5.2.3. Proceso de formación de la imagen.
 - 5.2.4. Condiciones de operación y limitaciones.
- 5.3. Microscopio electrónico de transmisión (TEM).
 - 5.3.1. Componentes principales de un TEM.

- 5.3.2. Mecanismo de formación de la imagen.
- 5.3.3. Difracción de electrones.
- 5.3.4. Teoría dinámica y cinemática de los electrones.
- 5.4. Microanálisis con rayos X.
 - 5.4.1. Espectrórnetro de dispersión de energía de rayos X (EDX)
 - 5.4.2. Espectrómetro de longitud de onda de rayos X (WDX).
 - 5.4.3. Comparación entre EDX y WDX.
 - 5.4.4. Análisis químico cualitativo con EDX y WDX.
 - 5.4.5. Análisis químico cuantitativo con EDX y WDX. Método ZAF.
 - 5.4.6. Aplicaciones de EDX y WDX.
- 6. Técnicas Espectroscópicas. 5 horas.

 Objetivo: El alumno conocerá los fundamentos y alcances de las técnicas espectroscópicas.
- 6.1. Espectrometría de absorción atómica.
- 6.2. Espectroscopía de emisión atómica por plasma inductivo acoplado (ICP)
- 6.3. Espectroscopía infraroja.
- 6.4. Espectroscopía Rarnan.
- 6.5 Espectroscopía de impedancias
- 7. Análisis Térmico.

5 horas.

Objetivo: El alumno conocerá los fundamentos, alcances y aplicaciones del análisis térmico.

- 7.1. Calorimetría diferencial de barrido, DSC
- 7.2. Análisis térmico diferencial, ATD
- 7.3. Termogravimetría, TG
- 7.4. Aplicaciones de ATD y TG

METODOLOGÍA

Exposición oral de los temas correspondientes por el profesor, auxiliado de material audiovisual (acetatos y diapositivas). Se pide a los alumnos desarrollar un

trabajo de investigación sobre algún método específico de caracterizar un cierto material.

EVALUACION

Asistencia a clases y tareas 30% Para obtener calificación aprobatoria en el curso el Presentación de trabajos 20% alumno deberá acreditar el laboratorio correspondiente. Exámenes escritos 50%

BIBLIOGRAFÍA

BIBLIOGRAFIA BASICA.

- a. Von Heimendahl, M., Electron Microscopy of Materials, an Introduction . Academic Press, (1980).
- b. Materials Characterization ASM Handbook, Volume 10, ASM International, (1992).
- c. Goldstein, J. l., Newbury, D. E., Echlin, P., Joy, D. C., Fiori, Ch., Lifshin, E. Scanning Electron Microscopy and X-ray Microanalysis Plenum Press, (1981).
- d. Jenkins, Ron, y Snyder, Robert L. Introduction to X-ray Powder Diffractometry John Wiley & Sons, Inc., (1996).

BIBLIOGRAFIA COMPLEMENTARIA.

- e. Zevin, L. S., y Kimmel, G. Quantitative X-ray Diffractometry Springer Verlag, (1995)
- f. Cullity, B.D.
 Elements of X-ray Diffraction,
 2nd Edition, Addison-Wesley Publishing Company,
 Inc., (1978).
- g. Flewitt P. E. J. and Wild R. K. Physycal Methods for Materials Characterization Graduate Students series in Materials Science and Engineering, Institute of Physics Publishing.