

A) COURSE

Course Id:	Course		
0041	Algebra A		

Class Hours per Week	Lab hours per week	Complementary practices	Credits	Total hour course
3	2	3	8	80

A) GENERAL COURSE INFORMATION

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:	I	Ι	I	Ι	I
Course Type (Required/Elective)	Required	Required	Required	Required	Required
Prerequisite Course:	No-one	No-one	No-one	No-one	No-one
CACEI Classification:	СВ	СВ	СВ	СВ	СВ

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of: Translating ordinary expressions to numerical systems, and develop functions such as tools concerning other subjects in his field.

D) TOPICS (CONTENTS AND METHODOLOGY)

1 THEORY OF	SETS AND THEIR APPLICATION	
Specific	Employing the basic concepts regarding the theory of sets and their application to problems pos	sed.
Objective:		

Objective:

1.1 Historic antecedents	
1.2 Concept of sets	
1.3 Notation of sets	
	egarding: extension, comprehension
1.5 Relationship of pertaina	
1.6 Special sets: universal,	
1.7 Cardinality of sets	empty, mile, millite
	of opto
1.8 Equality and inequality 1.9 Inclusion	or sets
	anuality and inclusion
1.9.1 Relationship between	
1.9.2 Proper and improper s	
	inclusion and the empty set
1.9.4 Properties of equality	and inclusion of sets
1.10 Equivalence of sets	
1.10.1 Univocal and biunivo	
1.10.2 Relationship of equiv	
	isjunctive, non-comparative
1.12 Set of sets	
1.13 Power set	14
1.14 Complementation and	
1.15 Intersection and its pro	
1.16 Union and its propertie	es
1.17 Difference of sets	
1.1.8 Linear diagrams	
1.1.9 Venn-Euler diagrams	
1.19.1 Regions on the diagr	
1.19.2 Demonstration of pro	
1.20 Tables of regions and	
1.20.1 Presenting operation	
1.20.2 Demonstrations usin	ig tables of
pertainance	
1.21 Product set	
1.21.1 Tree diagram	
1.22 Laws of algebra sets	
1.22.1 Demonstration of Th	eorems using the
laws of algebra sets.	
1.22.2 The Duality principle)
1.23 Number of elements in	the union of sets
1.24 Obtainment, analysis a	and assessment of
Information	
Readings and other	Readings to investigation of concepts, as well as to complement and strengthen the
resources	topics discussed in class.
Teaching methods	Exhibition topics by teacher and / or students; use of some didactic techniques like
	teamwork, learning based in problems and/or projects.
Learning activities	Exercise class and homework, as well as them respective interpretation of results.
Leanning activities	
2 MATHEMATICAL LOGIC	
	e symbolic form. Demonstrate the veracity of proposals, presenting the mathematica

2.1 Definition and the purpose of logic				
2.2 General division of logic				
2.3 Demonstration method	ls			
2.4 Proposals and connec	tors ("and"," or", "no")			
2.5 Fundamental operation	ns of mathematical logic, Conditional statements, biconditional, and implication			
2.6 Veracity tables, tautolo	ogy, contradiction			
2.7 Laws of Mathematical				
	natical Logic Mathematical Logic			
	eries, in parallel; construction and simplification)			
	ument, fallacy, logical implication)			
2.8.3 Quantifiers (existenti	al, universal, negation of proposals containing quantifiers)			
Readings and other Readings to investigation of concepts, as well as to complement and strengthen the				
resources topics discussed in class				
Teaching methods Exhibition topics by teacher and / or students; use of some didactic techniques like				
teamwork, learning based in problems and/or projects.				
Learning activities Exercise class and homework, as well as them respective interpretation of results.				

3.- NUMERICAL STRUCTURES

Specific	To employ all kinds of numbers with their different operations and properties, as well as handle
Objective:	the different numerical systems.

3.1 Brief history of the ancient numerical systems 3.1.1 Comparison of ancient numerical systems with the decimal system 3.2 Converting the decimal system to other numerical systems 3.2.1 Binary system 3.2.2 Octal system 3.2.3 Hexadecimal system 3.3 Converting other systems to the decimal system 3.4 Elemental operations on different bases 3.4.1 Addition 3.4.2 Subtraction 3.4.3 Multiplication 3.4.4 Division 3.5 Natural numbers 3.5.1 Definition 3.5.2 Peano postulates 3.5.3 Operations (addition and product) 3.6 Properties 3.6.1 Law of Trichotomy 3.7 Mathematical induction 3.8 Whole numbers 3.8.1. Definition 3.8.2. Binary relationships (addition and product) 3.8.3 Isomorphism 3.8.4 Prime numbers 3.8.5 Maximum common divider 3.9 Rational and irrational numbers 3.9.1 Definition 3.9.2 Equality and inequality 3.9.3 Decimal notation and its transformations 3.9.4 Elemental operations 3.9.5 The existence of irrationals 3.10 Real numbers 3.10.1 Family of numbers 3.10.2 Properties 3.10.3 Numerical straight line 3.10.4 Inequalities (absolute, conditional, absolute value) 3.11 Complex numbers 3.11.1 Definition Classification and equality 3.11.2 Pure imaginaries 3.11.3 Elemental operations in their rectangular form 3.11.4 Conjugating a complex number 3.11.5 Polar for (notation, transforming from rectangular to polar and vice versa) 3.11.6 Polar form operations (multiplication and division) 3.11.7 De Moivre Theorem 3.11.8 Equations with complex roots Readings and other Readings to investigation of concepts, as well as to complement and strengthen the resources topics discussed in class.

Teaching methods	Exhibition topics by teacher and / or students; use of some didactic techniques lik teamwork, learning based in problems and/or projects.	
Learning activities	Exercise class and homework, as well as them respective interpretation of results.	

4 FUNCTIONS					
Specific	a) Identify the concept of function as a relationship.				
Objective:	b) Employ the basic concepts and applications regarding the development of functions in power				
	series.				
4.1 Functions					
4.2 Product se	t, (arranged pairs)				
4.3 Relationsh	ips				
4.4 Definition (analytical, conjunctive)				
4.5 Definition of	of functions, domain and co-				
domain					
4.6 Function c	omposition				
	inctions: Injective, surjective				
4.8 Arithmetic					
4.8.1 Definitior					
4.8.2 nth term					
4.8.3 Summate	Dry				
4.9 Geometric	•				
4.9.1 Definitior					
4.9.2 nth term					
4.9.3 Summate	Dry				
	geometric progression				
4.11 harmonic					
4.12 Succession	ons: delimited, increasing,				
decreasing, co	nvergent and divergent				
4.13 Series	• •				
4.13.1 Definition	n				
4.13.2 Obtainii	4.13.2 Obtaining the nth term				
4.13.3 Convergent					
4.13.4 Divergent					
4.13.5 Convergent and divergent criteria for					
positive series: criteria of: comparison, quotient					
4.13.6 Alternate series (convergence and					
divergence criteria)					
4.13.7 Power series, definition and					
development; Taylor and Maclaurin series)					
D. I'.					
Readings and o	······································				
resources	topics discussed in class.				
Teaching meth					
	teamwork, learning based in problems and/or projects.				
Learning activi	ties Exercise class and homework, as well as them respective interpretation of results.				

E) TEACHING AND LEARNING METHODOLOGIES

- In class they will develop individually and team exercises topics to promote abstract and analytical reasoning.
- The use of teaching techniques will be promoted to encourage meaningful learning in some of the topics of the course are used.
- Management, search and interpreting of information related to the topics will be promoted.
- The use of ICTs will be promoted through homework or projects.

F) EVALUATION CRITERIA

Suggested Form of Evaluation and weighing	Schedule	Include	Weighing
First partial exam			
			25 %
Second partial exam			25 %
Third partial exam			25 %
Fourth partial exam			25 %
Total			100%
Ordinary exam			
Lab			
Extraordinary exam			
Title exam			
Regularization exam			

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

MAIN BOOKS

- Kleiman Ariel. Conjuntos: Aplicaciones matemáticas a la Administración. Ed. Limusa.
- Briton/Bello. Matemáticas Contemporáneas. Ed. Harla.
- Lipschutz. Teoría de conjuntos y temas afines. Ed. McGraw-Hill Serie Schaum.
- Smith Karl. Introducción a la lógica. Grupo Editorial Iberoamérica.
- Lipschutz S. Matemáticas Finitas. Ed. McGraw-Hill Serie Schaum.
- Spiegel. Algebra Superior. Ed. McGraw-Hill. Serie Schaum.
- Ayres/Mendelson. Cálculo Diferencial e Integral. Ed. McGraw-Hill Serie Schaum.
- Hall/Knigth. Álgebra Superior Ed. Cecsa.
- Swokowski E. Algebra, Geometría y Trigonometría Grupo Editorial Iberoamérica.

• Ayres Frank. Álgebra Moderna. Ed.McGraw-Hill.