



# A) COURSE

| Course Id: | Course    |
|------------|-----------|
| 0042       | ALGEBRA B |
|            |           |

| Class Hours per Week | Lab hours per week | Complementary<br>practices | Credits | Total hour<br>course |
|----------------------|--------------------|----------------------------|---------|----------------------|
| 3                    | 2                  | 3                          | 8       | 80                   |

### B) GENERAL COURSE INFORMATION

|                     | EE        | ME        | MME       | EME       | MTE       |
|---------------------|-----------|-----------|-----------|-----------|-----------|
|                     | (IEA)     | (IM)      | (IMA)     | (IME)     | (IMT)     |
|                     |           |           |           |           |           |
| Level:              | III       | =         | II        | II        | Ш         |
|                     |           |           |           |           |           |
| Course Type         | Required  | Required  | Required  | Required  | Required  |
| (Required/Elective) |           |           |           |           |           |
| Prerequisite        | ALGEBRA A |
| Course:             |           |           |           |           |           |
| CACEI               | СВ        | СВ        | CB        | CB        | СВ        |
| Classification:     |           |           |           |           |           |

# C) COURSE OBJECTIVE

| At the end of the course, the student will be capable of:                                                                  |
|----------------------------------------------------------------------------------------------------------------------------|
| To understand, interpret and apply the basic concepts of linear and polynomial algebra to a specific concept in his more   |
| advanced subjects and in his professional practice through the critical analysis in solving problems that involve vectors, |
| matrixes or equations.                                                                                                     |

# D) TOPICS (CONTENTS AND METHODOLOGY)

| 1 POLYNOMIALS AND N DEGREE EQUATIONS OF PARTICULAR GOAL                                  |                                              |                                                                                       |              |
|------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------|--------------|
| Specific                                                                                 | On concludir                                 | ng the teaching process and having achieved its learning, the student will be able to | ):           |
| Objective:                                                                               | a) Carry out n degree polynomial operations. |                                                                                       |              |
| -                                                                                        | b) Find a ma                                 | aximum common divider of two n degree polynomials.                                    |              |
|                                                                                          | c) Obtain the                                | e root of a polynomial through algebra methods.                                       |              |
|                                                                                          | d) Graphica                                  | lly interpret the n degree functions and the solution of the corresponding equations. |              |
| 1.1 Definition, cla                                                                      | assification a                               | nd numeric value of a polynomial                                                      |              |
| 1.1.1Polynomial                                                                          | equalness                                    |                                                                                       |              |
| 1.2 Operations a                                                                         | nd properties                                | 5                                                                                     |              |
| 1.3 Polynomial E                                                                         | quations                                     |                                                                                       |              |
| 1.4 Transforming                                                                         | g equations                                  |                                                                                       |              |
| 1.5 Solving degree equations (calculating their roots)                                   |                                              |                                                                                       |              |
| 1.5.1Whole and rational roots                                                            |                                              |                                                                                       |              |
| 1.5.2Irrational roots (solving by the Horner, Newton method and by linear interpolation) |                                              |                                                                                       |              |
| 1.6 Property of the roots                                                                |                                              |                                                                                       |              |
| Readings and o                                                                           | ther                                         | Readings to investigation of concepts, as well as to complement and strengthe         | n the topics |
| resources                                                                                |                                              | discussed in class.                                                                   |              |
| Teaching metho                                                                           | ods                                          | Exhibition topics by teacher and / or students; use of some didactic techniques like  | e teamwork,  |
|                                                                                          |                                              | learning based in problems and/or projects.                                           |              |





| Learning activi                             | ities                                                                                                  | Exercise class and homework, as well as them respective interpretation of results.             |  |  |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|
|                                             |                                                                                                        |                                                                                                |  |  |
| 2 MATRIXES                                  | AND DETERM                                                                                             | MINANTS                                                                                        |  |  |
| Specific                                    | Specific At the end of this unit, the student will be able to:                                         |                                                                                                |  |  |
| Objective:                                  | a) Plan the mathematical model of a problem when this problem corresponds to a linear                  |                                                                                                |  |  |
|                                             | equation                                                                                               | on system                                                                                      |  |  |
|                                             | b) Solve I                                                                                             | inear equation systems applying elemental transformations                                      |  |  |
|                                             | c) Carry c                                                                                             | out operations with matrixes                                                                   |  |  |
|                                             | d) Calcula                                                                                             | ate determinants                                                                               |  |  |
|                                             | e) Solve p                                                                                             | problems that require the properties of matrixes and determinants                              |  |  |
| 2.1 linear equat                            | tion system an                                                                                         | d matrixes                                                                                     |  |  |
| 2.1.1 Gauss an                              | d Gauss- Jord                                                                                          | lan elimination                                                                                |  |  |
| 2.1.2 Homogen                               | ous and non-l                                                                                          | nomogeneous linear equation systems (elemental line operations)                                |  |  |
| 2.2 Matrixes an                             | d determinant                                                                                          | S                                                                                              |  |  |
| 2.2.1 Operation                             | is with matrixe                                                                                        | S                                                                                              |  |  |
| 2.2.2 Special m                             | atrixes (zero r                                                                                        | natrixes, scalar, periodic, nilpotent and idempotent identity,)                                |  |  |
| 2.2.3 Symmetri                              | cal matrix and                                                                                         | anti-symmetrical matrix                                                                        |  |  |
| 2.3 Determinan                              | t and the Crar                                                                                         | ner rule                                                                                       |  |  |
| 2.3.1 Calculatin                            | ig n order dete                                                                                        | erminants                                                                                      |  |  |
| 2.4 Inverse mat                             | trix                                                                                                   |                                                                                                |  |  |
| 2.4.1 Solving lin                           | near systems t                                                                                         | hrough the inverse                                                                             |  |  |
| Readings and                                | other                                                                                                  | Readings to investigation of concepts, as well as to complement and strengthen the topics      |  |  |
| resources                                   |                                                                                                        | discussed in class.                                                                            |  |  |
| Teaching methods                            |                                                                                                        | Exhibition topics by teacher and / or students; use of some didactic techniques like teamwork. |  |  |
| learning based in problems and/or projects. |                                                                                                        | learning based in problems and/or projects.                                                    |  |  |
| Learning activities                         |                                                                                                        | Exercise class and homework, as well as them respective interpretation of results.             |  |  |
|                                             |                                                                                                        |                                                                                                |  |  |
| 3 VECTORS A                                 | AND VECTOR                                                                                             | R SPACES                                                                                       |  |  |
| Specific                                    | Specific On concluding this unit, the student will be able to:                                         |                                                                                                |  |  |
| Objective:                                  | a) Differentia                                                                                         | te the meaning of vector and scalar                                                            |  |  |
|                                             | b) Carry out                                                                                           | operations with vectors                                                                        |  |  |
|                                             | c) Explain the meaning of the scalar (internal) and vector (external) product of two geometric vectors |                                                                                                |  |  |
|                                             | and calculate them.                                                                                    |                                                                                                |  |  |

- d) Calculate the norm (magnitude), the angle, the distance and projection between two vectors
- e) Understand what a vector space means and identify it
- f) Define linear dependence and independence of a vector space set of vectors
- g) Define the base of a vector space, find bases in simple cases, realize base changes and find orthonormal bases
- h) Apply vectors to geometric and mechanical problems
- i) Identify the dimension of a vector space
- j) Obtain the transition matrix of a vector space





- 3.1 definition of a vector
- 3.2 Vectors on a plane and in space
- 3.3 Vector operations (scalar addition, subtraction and product)
- 3.3.1 Angle between two vectors and the projection of one vector over another
- 3.3.2 Vector product, triple scalar product and their geometrical representations
- 3.3.3 Geometrical and mechanical applications of vectors
- 3.4 Generalization of an n dimension
- 3.5 Vector spaces and subspaces
- 3.5.1 Linear dependence and independence
- 3.5.2 Linear combination and space generation
- 3.5.3 Concept of base and dimension. Orthonormal bases
- 3.5.4 Gram-Schmidt Orthonormalization
- 3.5.5 Base changes in vector spaces
- 3.5.6 Transition matrix of a vector space

| Readings and other  | Readings to investigation of concepts, as well as to complement and strengthen the topics      |  |  |
|---------------------|------------------------------------------------------------------------------------------------|--|--|
| resources           | discussed in class.                                                                            |  |  |
| Teaching methods    | Exhibition topics by teacher and / or students; use of some didactic techniques like teamwork, |  |  |
|                     | learning based in problems and/or projects.                                                    |  |  |
| Learning activities | Exercise class and homework, as well as them respective interpretation of results.             |  |  |

| 4 LINEAR TR                                 | ANSFORMAT                                                                                                 | IONS AND LINEAR PROGRAMMING                                                              |                  |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------|
| Specific                                    | On concludir                                                                                              | ng this unit, the student must be able to:                                               |                  |
| Objective:                                  | a) Define what a linear transformation is                                                                 |                                                                                          |                  |
|                                             | b) Distinguish linear transformations from non linear ones                                                |                                                                                          |                  |
|                                             | c) Explain the meaning of the terms, core, nullity, range and distanced traveled of a linear transformati |                                                                                          |                  |
| as well as its obtainment                   |                                                                                                           |                                                                                          |                  |
|                                             | d) Define wh                                                                                              | at a transformation matrix is, obtain it and describe the effect of the linear transform | nation           |
|                                             | e) Obtain the                                                                                             | e characteristic values and vectors of a matrix                                          |                  |
|                                             | f) Determine                                                                                              | if two matrixes, associated to a transformation are similar or not                       |                  |
|                                             | g) Understar                                                                                              | nd what a linear programming                                                             |                  |
|                                             | h) Graph a s                                                                                              | ystem of linear inequations                                                              |                  |
|                                             | i) Solve simp                                                                                             | ble linear programming problems in a graphic way and applying the simplex method         |                  |
| 4.1 Definition a                            | nd properties (                                                                                           | of linear transformations                                                                |                  |
| 4.1.1 Kernel (co                            | pre) and image                                                                                            | e (distance traveled) of a linear transformation                                         |                  |
| 4.1.2 Nullity and                           | d range of a lir                                                                                          | near transformation                                                                      |                  |
| 4.1.3 Matrix rep                            | resentation of                                                                                            | a linear transformation (transformation matrix)                                          |                  |
| 4.1.4 Character                             | istic values ar                                                                                           | nd vectors of a matrix                                                                   |                  |
| 4.2 Introduction to linear programming      |                                                                                                           |                                                                                          |                  |
| 4.2.1 Linear ine                            | qualities on tv                                                                                           | vo variables                                                                             |                  |
| 4.2.2 Concept and use of linear programming |                                                                                                           |                                                                                          |                  |
| 4.2.3 Geometric focus (graphic method)      |                                                                                                           |                                                                                          |                  |
| 4.2.4 Problems                              | . 4                                                                                                       |                                                                                          |                  |
| Readings and                                | otner                                                                                                     | Readings to investigation of concepts, as well as to complement and strengthe            | en the topics    |
| resources                                   | ada                                                                                                       | CISCUSSED IN CIRSS.                                                                      | a fa a martarita |
| leaching methods                            |                                                                                                           | Exhibition topics by teacher and / or students; use of some didactic techniques lik      | e teamwork,      |
|                                             | 4                                                                                                         | learning based in problems and/or projects.                                              |                  |
| Learning activi                             | ties                                                                                                      | Exercise class and homework, as well as them respective interpretation of results        | •                |

#### E) TEACHING AND LEARNING METHODOLOGIES

The course will be organized around three sessions presentations by the teacher, and two sessions for discussion and solution of problems. It also frees the teacher to use new technology techniques to strengthen and increase learning.





## F) EVALUATION CRITERIA

All features demonstrating a change in student conduct such as class participation, extra outside class research assignments, homework; class attendance, teamwork and exams will be considered and taken into account.

# G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

#### Main Books:

- Granville Willian Anthony, Cálculo Diferencial e Integral Ed. Uthea
- U.V.Uspensky. Teoría de Ecuaciones. Ed. Limusa.
- Larson Roland E. Cálculo y Geometría Analítica. Ed. McGraw-Hill.
- Lemhan Charles H. Álgebra. Ed. Limusa.
- Murray R. Spiegel. Álgebra Superior. Ed. McGraw-Hill.
- Briton R.Jack, Bello Ignacio. Matemáticas Contemporaneas .Ed. Harla
- Howard Anton. Introducción al Álgebra Lineal. Ed. Limusa.
- Florey F,G, Fundamentos de Álgebra Lineal. Ed. Prentice Hall
- Grossman Stanley Y. Álgebra lineal. Ed. Limusa.
- Perry William L. Álgebra Lineal con Aplicaciones. Mc.Graw-Hill
- Haward Anton. Aplicaciones de Álgebra Lineal. Ed. Limusa.
- Grossman Stanley I. Aplicaciones de Álgebra Lineal. Mc.Graw-Hill

#### **Complementary Books:**