

# Universidad Autónoma de San Luis Potosí Facultad de Ingeniería Programas Analíticos del Área Mecánica y Eléctrica



#### A) CURSO

| Clave | Asignatura |
|-------|------------|
| 0053  | Cálculo C  |

| Horas de teoría<br>por semana | Horas de práctica<br>por semana | Horas trabajo<br>adicional<br>estudiante | Créditos | Horas Totales |
|-------------------------------|---------------------------------|------------------------------------------|----------|---------------|
| 2                             | 2                               | 2                                        | 6        | 64            |

#### B) DATOS BÁSICOS DEL CURSO

|                                    | IEA         | IM          | IMA         | IME         | IMT |
|------------------------------------|-------------|-------------|-------------|-------------|-----|
| Nivel:                             | II          | II          | III         | II          |     |
| Tipo<br>(Optativa,<br>Obligatoria) | Obligatoria | Obligatoria | Obligatoria | Obligatoria |     |
| Prerrequisito:                     | Cálculo A   | Cálculo A   | Cálculo A   | Cálculo A   |     |
| Clasificación<br>CACEI:            | СВ          | СВ          | СВ          | СВ          |     |

#### C) OBJETIVO GENERAL DEL CURSO

# Al finalizar el curso el estudiante será capaz de:

Analizar y manejar las funciones vectoriales y sus teoremas principales así como algunas aplicaciones.

#### D) CONTENIDOS Y MÉTODOS POR UNIDADES Y TEMAS

# 1.- Álgebra de vectores Objetivo Específico: Específico: Diadra de vectores El alumno conocerá, manejará y aplicará los principios y teoremas relativos al álgebra de vectores así como su representación geométrica y/o su aplicación en problemas.

- 1.1 Definición de vector.
- 1.2 Igualdad entre vectores.
- 1.3 Multiplicación por un escalar.
- 1.4 Vectores unitarios.
- 1.5 Representación gráfica.
- 1.5.1 Representación puntual.
- 1.5.2 Representación por suma de componentes.
- 1.5.3 Representación por combinación lineal.
- 1.6. Operaciones vectoriales.
- 1.6.1 Adición vectorial.
- 1.6.2 Sustracción vectorial.
- 1.6.3 Producto escalar.
- 1.6.4 Producto vectorial.
- 1.7 Triples.
- 1.7.1 Triple producto escalar.
- 1.7.2 Triple producto vectorial.



# Universidad Autónoma de San Luis Potosí Facultad de Ingeniería



#### Programas Analíticos del Área Mecánica y Eléctrica

| Lecturas y otros recursos | Bibliografía acorde a las necesidades del tema y asesorías. |
|---------------------------|-------------------------------------------------------------|
| Métodos de enseñanza      | Exposición de temas, análisis de los conceptos expuestos.   |
| Actividades de            | Asignación de tareas y discusión de éstas.                  |
| aprendizaje               |                                                             |

# 2.- Cálculo diferencial vectorial. Objetivo Específico: El alumno analizará y describirá el tipo de relaciones y funciones vectoriales, sus derivadas y su significado geométrico. Aplicará las funciones vectoriales a la geometría diferencial y analizará el concepto de operadores vectoriales.

- 2.1 Funciones vectoriales.
- 2.2 Derivadas de funciones vectoriales.
- 2.2.1 Derivadas de funciones vectoriales en una variable.
- 2.2.2 Derivadas de funciones vectoriales en varias variables.
- 2.3 Reglas de la derivación vectorial.
- 2.4 Diferenciales.
- 2.5 Geometría diferencial.
- 2.5.1 Parámetros principales.
- 2.5.2 Escalares importantes.
- 2.5.3 Planos ortogonales.
- 2.6 Operadores vectoriales.
- 2.6.1 Operador nabla.
- 2.6.2 Gradiente de una función escalar.
- 2.6.3 Divergencia de una función vectorial.
- 2.6.4 Rotacional de una función vectorial.
- 2.6.5 Operador Laplaciano.
- 2 6 6 Reglas de los operadores

| 2.0.0 Noglas de los operadores.                                                       |                                                           |  |  |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|
| Lecturas y otros recursos Bibliografía acorde a las necesidades del tema y asesorías. |                                                           |  |  |
|                                                                                       |                                                           |  |  |
| Métodos de enseñanza                                                                  | Exposición de temas, análisis de los conceptos expuestos. |  |  |
| Actividades de                                                                        | Asignación de tareas y discusión de éstas.                |  |  |
| aprendizaje                                                                           |                                                           |  |  |

#### 3.- Coordenadas curvilíneas. 12 horas Objetivo El alumno conocerá e interpretará otros sistemas de coordenadas, así como las transformaciones y Específico: desarrollos geométricos. Aplicará estas transformaciones en expresiones funcionales sencillas, así como vectores de posición en coordenadas esféricas y cilíndricas. 3.1 Coordenadas curvilíneas. 3.2 Transformación de coordenadas. 3.3 Vectores unitarios en sistemas curvilíneos. 3.4 Elementos de volumen. 3.5 Gradiente en coordenadas generalizadas. 3.6 Divergencia en coordenadas generalizadas. 3.7 Rotaciones en coordenadas ortogonales. 3.8 Coordenadas cilíndricas. 3.9 Coordenadas esféricas. Lecturas y otros recursos Bibliografía acorde a las necesidades del tema y asesorías. Métodos de enseñanza Exposición de temas, análisis de los conceptos expuestos. Actividades de Asignación de tareas y discusión de éstas. aprendizaje

| 4 Integración vectorial. | 12 horas |
|--------------------------|----------|
|                          |          |



# Universidad Autónoma de San Luis Potosí Facultad de Ingeniería



# Programas Analíticos del Área Mecánica y Eléctrica

| Objetivo                                | El alumno conocerá, calculará y aplicará la integración de funciones vectoriales ordinarias, así como de |  |  |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|
| Específico:                             | funciones vectoriales de línea, superficie y volumen.                                                    |  |  |  |
| 4.1 Integrales o                        | rdinarias.                                                                                               |  |  |  |
| 4.2 Integrales c                        | urvilíneas.                                                                                              |  |  |  |
| 4.2.1. Integrales                       | s de línea.                                                                                              |  |  |  |
| 4.2.2 Integrales de línea cerrada.      |                                                                                                          |  |  |  |
| 4.2.3 Integrales                        | 4.2.3 Integrales de superficie.                                                                          |  |  |  |
| 4.2.4 Integrales de superficie cerrada. |                                                                                                          |  |  |  |
| 4.2.5 Integrales de volumen.            |                                                                                                          |  |  |  |
| 4.3. Aplicación a                       | a la mecánica.                                                                                           |  |  |  |

| 4.0. Apricación a la medanica. |                                                             |  |
|--------------------------------|-------------------------------------------------------------|--|
| Lecturas y otros recursos      | Bibliografía acorde a las necesidades del tema y asesorías. |  |
| Métodos de enseñanza           | Exposición de temas, análisis de los conceptos expuestos.   |  |
| Actividades de aprendizaje     | Asignación de tareas y discusión de éstas.                  |  |

| 5 Teoremas aplicables a c                                              | 5 Teoremas aplicables a cálculo integral vectorial. 8 horas                                             |  |  |  |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|
| Objetivo El alumno co                                                  | El alumno conocerá y aplicará la relación entre la integración vectorial y su aplicación con 3 teoremas |  |  |  |
| Específico: importantes,                                               | teorema de Green, Gauss y Stokes.                                                                       |  |  |  |
| 5.1 Teoremas operacionales                                             | integrales.                                                                                             |  |  |  |
| 5.1.1 Teorema del plano.                                               |                                                                                                         |  |  |  |
| 5.1.2 Teorema de la diverger                                           | ncia.                                                                                                   |  |  |  |
| 5.1.3 Teorema del rotacional                                           |                                                                                                         |  |  |  |
| 5.2 Relación entre teoremas.                                           | 5.2 Relación entre teoremas.                                                                            |  |  |  |
| 5.3 Ejercicios.                                                        |                                                                                                         |  |  |  |
| Lecturas y otros recursos                                              | Bibliografía acorde a las necesidades del tema y asesorías.                                             |  |  |  |
| Métodos de enseñanza                                                   | Exposición de temas, análisis de los conceptos expuestos.                                               |  |  |  |
| Actividades de Asignación de tareas y discusión de éstas.  aprendizaje |                                                                                                         |  |  |  |
| aprendizaje                                                            |                                                                                                         |  |  |  |

# E) ESTRATEGIAS DE ENSEÑANZA Y APRENDIZAJE

- a) Exposición convencional de cada tema por parte del profesor, utilizando materiales como pizarrón.
- b) Aprendizaje basado en problemas.
- c) Prácticas de obtención y análisis de datos.

# F) EVALUACIÓN Y ACREDITACIÓN

| Evaluación:                | Periodicidad | Forma de Evaluación y<br>Ponderación Sugerida      | Temas a Cubrir |
|----------------------------|--------------|----------------------------------------------------|----------------|
| 1er. Evaluación Parcial    | 16 sesiones  | Examen 80%, Tareas 20%; (Valor relativo: 33.3%)    | 1 y 2          |
| 2º Evaluación Parcial      | 16 sesiones  | Examen 80%, Tareas 20%;<br>(Valor relativo: 33.3%) | 3              |
| 3er. Evaluación Parcial    | 16 sesiones  | Examen 80%, Tareas 20%;<br>(Valor relativo: 33.3%) | 4 y 5          |
| Evaluación Final Ordinario |              | 100% (Promedio de las<br>Evaluaciones Parciales)   |                |
| Otra Actividad:            |              |                                                    |                |



# Universidad Autónoma de San Luis Potosí Facultad de Ingeniería Programas Analíticos del Área Mecánica y Eléctrica



| Examen Extraordinario    | Semana 17 del semestre en curso                       | 100% Examen | 100% Temario |
|--------------------------|-------------------------------------------------------|-------------|--------------|
| Examen a título          | De acuerdo a<br>programación de<br>Secretaría Escolar | 100% Examen | 100% Temario |
| Examen de regularización | De acuerdo a<br>programación de<br>Secretaría Escolar | 100% Examen | 100% Temario |

# G) BIBLIOGRAFÍA Y RECURSOS INFORMÁTICOS

## Textos básicos:

- 1. Mena, Baltasar, Introducción al cálculo vectorial, 1ª edición, México, Thomson, 2003.
- 2. Estrada, o; García, p; y Monsivais, G., Cálculo vectorial y aplicaciones; 1ª edición, México, grupo editorial lberoamérica.648 pp., 1999.
- 3. Marsden, Jerrold e. y Tromba, Anthony J. Cálculo Vectorial, 1ª edición, México, Prentice Hall hispanoamericana, 1995.

## Textos complementarios:

1. Davis, Harry F. Y snider, Arthur D. Análisis vectorial, 1ª edición. México, Mcgraw Hill, 430 pp. 1993.