

A) COURSE

Course Id:	Course				
0053	Calculus C				

Class Hours per Week	Lab hours per week	Complementary	Credits	Total hour
		practices		course
2	2	2	6	64

B) GENERAL COURSE INFORMATION:

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:	II	II	III	II	
Course Type (Required/Elective)	Required	Required	Required	Required	
Prerequisite Course:	Calculus A	Calculus A	Calculus A	Calculus A	
CACEI Classification:	BS	BS	BS	BS	

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of:
Analyze and handle vector functions and its main theorems and some applications.

D) TOPICS (CONTENTS AND METHODOLOGY)

1 Vector alge	bra.	12 hours			
Specific	Specific The student will know, and apply the principles and theorems relative to vector algebra and geometric				
Objective:	representation and / or application problems.				
1.1 Definition of	vector.				
1.2 Equality bet	ween vectors.				
1.3 Multiplicatio	n by a scalar.				
1.4 Unitary Vec					
1.5 Graphical re	epresentation.				
1.5.1 Represen	1.5.1 Representation punctual.				
1.5.2 Representation by sum of components.					
1.5.3 Representation by linear combination.					
1.6. Vector operations.					
1.6.1 Vector Ad	1.6.1 Vector Addition.				
1.6.2 Vector Su	1.6.2 Vector Subtraction.				
1.6.3 Scalar Pro	1.6.3 Scalar Product.				
1.6.4 Vector Product.					
1.7 Triples.	1.7 Triples.				
1.7.1 Triple scalar product.					
1.7.2 Triple vec	tor product.				

Readings and other Bibliography according to the topic and advice.	
resources	
Teaching Methodologies	Exhibition topics, analysis of the concepts presented.
Learning Activities	Assignments and discussion of them.

2 Differential coloulus vests

2. Differential of	alculus vector. 20 hours			
Specific	The student will analyze and describe the type of relationships and vector functions, their derivatives and			
Objective:	their geometric meaning. The student will apply the vector functions to differential geometry and analyses			
	the concept of vector operators.			
2.1 Vector funct	ONS.			
2.2 Derivatives	of vector functions.			
2.2.1 Derivative	s of vector functions in a variable.			
2.2.2 Derivative	s of vector functions in several variables.			
2.3 Rules of the	vector derivation.			
2.4 Differentials				
2.5 Differential g	eometry.			
2.5.1 Main para	neters.			
2.5.2 Scalars im	portant.			
2.5.3 Orthogona	I planes.			
2.6 Vector Oper	ators.			
2.6.1 Nabla ope				
2.6.2 Gradient c	f a scalar function.			
2.6.3 Divergenc	e of a vector function.			
2.6.4 Rotational	of a vector function.			
2.6.5 Laplacian operator.				
2.6.6 Rules of the operators.				
Readings and	other Bibliography according to the topic and advice.			
resources				
Teaching Meth				
Learning Activ	ties Assignments and discussion of them.			

...

3Curvilinear co	pordinates. 12 hours				
	The student will know other coordinate systems, as well as transformations and geometric developments. It				
Objective:	will apply these transformations in simple functional expressions and position vectors in spherical and				
	cylindrical coordinates.				
3.1 Curvilinear co	ordinates.				
3.2 Coordinate tr	ansformation.				
3.3 Unitary vecto	rs in curvilinear systems.				
3.4 Volume elem	ents.				
	generalized coordinates.				
	Divergence in generalized coordinates.				
	orthogonal coordinates.				
	3.8 Cylindrical coordinates.				
3.9 Spherical coordinates.					
Readings and o	other Bibliography according to the topic and advice.				
resources	resources				
Teaching Metho	lethods Exhibition topics, analysis of the concepts presented.				
Learning Activit	ities Assignments and discussion of them.				

4.Vector integration.		12 hours	
Specific The stu	dent will know the integration of common vector functions and vector function	ons of line, surface and	
Objective: volume			
4.1 Ordinary integrals.			
4.2 Integral curvaceous.			
4.2.1 Line integrals.			
4.2.2 Closed line integra	ls.		
4.2.3 Surface integrals.			
4.2.4 Closed surface inte	egrals.		
4.2.5 Volume integrals.			
4.3 Application to mecha	anics.		
Readings and other	Bibliography according to the topic and advice.		
resources			
Teaching Methods	ods Exhibition topics, analysis of the concepts presented.		
Learning Activities	Assignments and discussion of them.		

5Theorems a	pplicable to vector calculus. 8 hours				
Specific	Students will learn and apply the relationship between vector and application integration with 3 important				
Objective:	theorems, theorem of Green, Gauss and Stokes.				
5.1 Theorems in	ntegrals operational.				
5.1.1 Theorem	of plane.				
5.1.2 Divergence	be theorem.				
5.1.3 Rotational	Rotational theorem.				
5.2 Relationship	between theorems.				
5.3 Exercises.					
Readings and	other Bibliography according to the topic and advice.				
resources					
Teaching Meth	g Methods Exhibition topics, analysis of the concepts presented.				
Learning Activ	earning Activities Assignments and discussion of them.				

E) TEACHING AND LEARNING METHODOLOGIES

- a) Conventional Exposure of each topic by the teacher, using materials such as board.
- b) Problem-based learning.
- c) Practices data collection and analysis.

F) EVALUATION CRITERIA:

Evaluation:	Schedule	Suggested Form of Evaluation and weighing	Topics
	(0.0.)	<u> </u>	
1st. Partial Evaluation	16 Session	Exam 80%, Task 20%;	1 y 2
		(Relative value: 33.3%)	
2nd Partial Evaluation	16 Session	Exam 80%, Task 20%;	3
		(Relative value: 33.3%)	
3rd. Partial Evaluation	16 Session	Exam 80%, Task 20%;	4 y 5
		(Relative value: 33.3%)	-
Ordinary Final Evaluation		100 % (Average Partial	
		Ratings)	

Universidad Autónoma de San Luis Potosí College of Engineering Mechanical and Electrical Department Analytical Program

Other Activity:			
Extraordinary Exam	Week 17 the semester	Exam 100%	100% Topics
Title Exam	According to the Schedule of the school secretary	Exam 100%	100% Topics
Regularizatión Exam	According to the Schedule of the school secretary	Exam 100%	100% Topics

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main Books

- 1. Mena, Baltasar, Introducción al cálculo vectorial, 1ª edición, México, Thomson, 2003.
- 2. Estrada, o; García, p; y Monsivais, G., Cálculo vectorial y aplicaciones; 1ª edición, México, grupo editorial lberoamérica,648 pp., 1999.
- 3. Marsden, Jerrold e. y Tromba, Anthony J. Cálculo Vectorial, 1ª edición, México, Prentice Hall hispanoamericana, 1995.

Complementary Books

1. Davis, Harry F. Y snider, Arthur D. Análisis vectorial, 1ª edición. México, Mcgraw Hill, 430 pp. 1993.

Internet Links