

A) COURSE

Course Id:	Course		
0054	Calculus D		

Class Hours per Week	Lab hours per week	Complementary	Credits	Total hour
		practices		course
3	2	3	8	80

B) GENERAL COURSE INFORMATION:

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:	III	III	ll	II	II
Course Type (Required/Elective)	Required	Required	Required	Required	Required
Prerequisite Course:	Calculus A	Calculus A	Calculus A	Calculus A	Calculus A
CACEI Classification:	BS	BS	BS	BS	BS

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of: To solve the different ordinary differential equations and have the capacity to apply them to different phenomena of our nature.

D) TOPICS (CONTENTS AND METHODOLOGY)

1 Introduction.	2 hours			
Specific	Specific The student will learn and handle the fundamental concepts of differential equations, as well as the origins			
Objective:	of the same in different areas of knowledge.			
1.1 Definition an	d classifications of a differential equation according to order, degree, type of coefficient and linearity.			
1.2 Types of diff	erential equation solutions: explicit, implicit and formal.			
1.3 Existence of	a solution.			
1.4 Origins of dif	ferential equations: formulating new mathematical models and laws of physics that involve mathematical			
models.				
1.5 The meaning	of solution and differential equations: geometric, physical and generating an equation from the primitive			
function.	function.			
Readings and o	Readings and other Bibliography according to the topic and advice.			
resources	resources			
Teaching Metho	bdologies Exhibition topics, analysis of the concepts presented.			
Learning Activi	Learning Activities Assignments and discussion of them.			

2. First order and first degree differential equations.

3 hours

Universidad Autónoma de San Luis Potosí College of Engineering Mechanical and Electrical Department Analytical Program

Specific	The student will acquire the ability, through explanations from the teacher, and the solution of problems				
objective:	with his teacher as well as on his own in the laboratory.				
2.1 Solution of e	quations through variables separable and reducible to this form (homogeneous equations).				
2.2 Solution of e	quations by variables, exact and reducible to them by integrating factor (s).				
2.3 Solution of li	near and reducible equations to linear ones (bernoulli equation).				
2.4 Solution of fr	2.4 Solution of fraction linear or form translating equations.				
2.5 Applications	to problems: geometric, physical, reasons and proportions.				
Readings and o	Readings and other Bibliography according to the topic and advice.				
resources	resources				
Teaching Metho	Feaching Methods Exhibition topics, analysis of the concepts presented.				
Learning Activi	Learning Activities Assignments and discussion of them.				

3 First order a	nd higher degree differential equations. 8 hours				
Specific	The student will learn this type of equations and acquire the necessary ability to solve them by deriving the				
Objective:	appropriate equation, which he will do in the laboratory under the guide of the professor.				
3.1 Solvable eq	uations for "p".				
	uations for "y", Clairaut equation.				
3.3 Solvable eq	uations for "x".				
3.4 Singular sol	ution and covering.				
3.5 Discriminate	s "p" y "c".				
3.6 Applications					
Readings and	Readings and other Bibliography according to the topic and advice.				
resources	resources				
Teaching Meth	ods Exhibition topics, analysis of the concepts presented.				
Learning Activ	Learning Activities Assignments and discussion of them.				

4. Solution of th	4. Solution of the second differential equation by reduction order. 30 hours				
Specific	Since the second order differential equations are those that have many applications in different branches of				
Objective:	knowledge, the student will acquire the ability to solve them and recognize the difference betwee	en a linear			
	and a non-linear.				
4.1 The equation	on does not contain the independent variable.				
4.2 The equation	on does not contain the dependent variable.				
4.3 The equation	on contains the dependent variable and the first square derivative 4.4 the equation is a function of	the			
dependent varia	iable.				
4.5 Applications	IS.				
Readings and other Bibliography according to the topic and advice.					
resources	resources				
Teaching Meth	Teaching Methods Exhibition topics, analysis of the concepts presented.				
Learning Activ	Learning Activities Assignments and discussion of them.				

5 Linear differential equations with constant coefficients.			
Specific	Specific Under professor guidance, the student will learn these equations and acquire the ability to solve them in		
Objective:	class as well as in the laboratory and will be able to apply them to different actual problems		

Universidad Autónoma de San Luis Potosí College of Engineering Mechanical and Electrical Department Analytical Program

- 5.1 Basic theory of higher order linear differential equations.
- 5.2 Solution of homogenous equation by order reduction, using operators.

5.3 Solution of the homogenous equation by an auxiliary equation, when having real and different roots, real and repeated roots, and complex roots.

5.4 Complete solution of a non-homogenous differential equation by; undetermined coefficients and by parameter variation.

5.5 Cauchy linear equation.

5.6 Applications.

Readings and other Bibliography according to the topic and advice.	
resources	
Teaching Methods	Exhibition topics, analysis of the concepts presented.
Learning Activities	Assignments and discussion of them.

The Laplace tra	ansform. 5 hours					
Specific T	Specific The student will handle this linear transformation and use it to solve differential in a more practical way.					
Objective:						
6.1 General conc	epts of the transform: definition and conditions of existence.					
6.2 Transforms of	f the most common functions.					
6.3 Theorems for	calculating the transform of other functions.					
6.4 Laplace invers	6.4 Laplace inverse transform.					
6.5 Solution of dif	fferential equations by Laplace transforms.					
Readings and ot	ther Bibliography according to the topic and advice.					
resources						
Teaching Metho	ds Exhibition topics, analysis of the concepts presented.					
Learning Activiti	Learning Activities Assignments and discussion of them.					

7 Linear differen	atial aquation	avatama	5 hours			
7. Linear differe			5 hours			
Specific		will acquire the ability to solve differential equation systems, which he may use in a				
Objective:	physical phe	nomena such as movements on a plane, mass systems coupled to springs and ele	ectric			
	networks.					
7.1 Solution by	elimination					
7.2 Solution by	7.2 Solution by determinants					
7.3 Solution by I	_aplace trans	forms				
7.4 Initial value	problems					
7.5 Applications						
Readings and	Readings and other Bibliography according to the topic and advice.					
resources	resources					
Teaching Meth	ods	Exhibition topics, analysis of the concepts presented.				
Learning Activ	earning Activities Assignments and discussion of them.					

E) TEACHING AND LEARNING METHODOLOGIES

- a) One-hour theory classes for three days plus two hours of lab per week.
- b) The teaching-learning process will be reinforced by homework assignments for each of the topics.

F) EVALUATION CRITERIA:

Evaluation:	Schedule	Suggested Form of Evaluation and weighing	Topics
1st. Partial Evaluation	16 Session	Exam 80%, Task 20%; (Relative value: 33.3%)	1, 2 y 3

Universidad Autónoma de San Luis Potosí College of Engineering Mechanical and Electrical Department Analytical Program

2nd Partial Evaluation	16 Session	Exam 80%, Task 20%; (Relative value: 33.3%)	4 y 5
3rd. Partial Evaluation	16 Session	Exam 80%, Task 20%; (Relative value: 33.3%)	6 y 7
Ordinary Final Evaluation		100 % (Average Partial Ratings)	
Other Activity:			
Extraordinary Exam	Week 17 the semester	Exam 100%	100% Topics
Title Exam	According to the Schedule of the school secretary	Exam 100%	100% Topics
Regularizatión Exam	According to the Schedule of the school secretary	Exam 100%	100% Topics

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main Books

- 1. Zill Dennis G., *Ecuaciones Diferenciales con Aplicaciones de Modelado,* ISBN: 978-607-481-313-5, 9a Ed., CENGAGE Learning, 2009.
- 2. Ross Shepley L. Introducción a las Ecuaciones Diferenciales, 3a Ed., McGraw-Hill, 1993.

Complementary Books

1. Takeuchi-Ramírez-Ruíz, *Ecuaciones Diferenciales*, editorial Limusa, 2000.

Internet Links