

A) COURSE

Course Id:	Course
5517	Electric Circuits A

Class Hours per Week	Lab hours per week	Complementary practices	Credits	Total hour course
5	2	5	12	80 class 32 Practice

B) GENERAL COURSE INFORMATION:

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:	IV			IV	III
Course Type (Required/Elective)	Required			Required	Required
Prerequisite	Electricity and			Electricity and	Electrotechnology
Course:	Magnetism B			Magnetism B	for Engineering I
CACEI	CI			CI	CI
Classification:					

A) C) GENERAL COURSE INFORMATION:

At the end of the course, the student will be capable of: ANALIZE TOP METHODS AND TECHNIQUES OF LINEAR ELECTRICAL CIRCUITS, CONSIDERING DIFFERENT SOURCES OF EXCITEMENT IN PERMANENT AND TRANSIENT STATE

D) TOPICS (CONTENTS AND METHODOLOGY)

1 Basic concepts of electr	ical circuits I	5	hours
Specific Analyze the	main laws governing the behavior of electrical circuits.		
Objective:			
1.1 Voltage and Current cor	ncept		
1.2 Ohm Law			
1.3 Net and Node concepts			
1.4 Kirchhoff Laws			
1.5 Independent and depen	dent sources		
1.6 Arrangement serie-para	llell of resistors and delta/star and star/delta transformations		
1.7 Voltage Divisor and curr	rent divisor		
Readings and other	Positings and investigations to complement the analyzed in class topics		
resources			
Teaching Methodologies	Exhibition topics by teacher and/or students; use of some didactic techniques; dis	cus	sion
	and analysis sessions; development of lab practices according topics covered in c	clas	S
Learning Activities	Exercise class or homework; work or research projects and digital simulation exer	cis	əs

2 Methods and techniques	s of resistive circuits analysis	20 hours	
Specific Apply main r	methods and techniques of linear circuits. Identify the most appropriate technique or	method to	
Objective: solve any type	pe of circuit		
2.1 Netting method			
2.2 Super net concept			
2.3 Node method			
2.4 Super node concept			
2.5 Reducción de redes tra	nsformaciones		
2.6 Voltage and current sou	irces equivalent		
2.7 Superposition theorem			
2.8 Thevenin theorem			
2.9 Norton theorem			
2.10 Theorem of maximum	power transfer		
2.11 Power in resistive circuits			
Readings and other	Readings and investigations to complement the analyzed in class topics		
resources			
Teaching Methodologies	Exhibition topics by teacher and/or students; use of some didactic techniques like	e teamwork,	
	learning based in problems and/or projects; development of lab practices acco	rding topics	
	covered in class		
Learning Activities	Exercises in class and homework and their respective interpretation ; digita	I simulation	
	exercises, various activities on digital platforms online		

3 Steady state analysis of	f circuits RL RC series and parallel connections	5 hours
Specific Identify inde Objective:	uctors and capacitors like elements of a circuit that store energy	
3.1 Series-parallel arrange	ment of inductance	
3.2 Series-parallel arrange	ment of capacitance	
3.3 Equivalent inductance	and/or capacitance	
3.4 Inductor Voltage		
3.5 Capacitor Current		
3.6 Initial and steady state conditions of RL and RC circuits		
Readings and other Readings for research concepts as well as to complement and strengthen the topics		
resources	discussed in class	
Teaching Methodologies	Exhibition topics by teacher and/or students; use of some didactic techniques like learning based in problems and/or projects; development of lab practices accordin covered in class	teamwork, ng topics
Learning Activities	Exercises in class and homework and their respective interpretation ; digital simul exercises , various activities on digital platforms online	ation

-RC circuits supplied with direct current	15 hours	
transitional stage of RL and RC circuits in their series and / or parallel configuration	S.	
ement: natural response		
ement: natural response		
4.3 Time constant circuits RL -RC		
4.4 Unit step function		
4.5 Response of an RL or RC circuit excited by a constant source		
4.6 Response of an RC or RL circuit excited by a non-constant source		
Readings for research concepts as well as to complement and strengthen the topi	cs	
discussed in class		
	-RC circuits supplied with direct current transitional stage of RL and RC circuits in their series and / or parallel configuration ement: natural response ement: natural response ement: natural response circuit excited by a constant source RL circuit excited by a non-constant source Readings for research concepts as well as to complement and strengthen the topi discussed in class	

Universidad Autónoma de San Luis Potosí College of Engineering Mechanical and Electrical Department Analytical Program

Teaching Methodologies	Exhibition topics by teacher and/or students; use of some didactic techniques like teamwork, learning based in problems and/or projects; development of lab practices according topics
	covered in class.
Learning Activities	Exercises in class and homework and their respective interpretation; digital simulation
	exercises, various activities on digital platforms online.

5.- Sinusoidal function

5 Sinusoidal 1	function	5 hours
Specific	Identify the main characteristics of a sinusoidal function. Set the current-voltage relations with s	sinusoidal
Objective:	excitation in RLC circuits and define the concept of effective value.	

- 5.1.- General concepts of a sinusoidal signal : peak value , peak-peak period frequency.
- 5.2.- Phase displacement of sinusoidal signals.
- 5.3.- Voltage-current relationship in a resistive circuit.
- 5.4.- Voltage-current relationship in a inductive circuit.
- 5.5.- Voltage-current relationship in a capacitive circuit.
- 5.6.- Effective value of sinusoidal voltages and currents

Readings and other	Readings for research concepts as well as to complement and strengthen the topics
resources	discussed in class
Teaching Methodologies	Exhibition topics by teacher and/or students; use of some didactic techniques like teamwork, learning based in problems and/or projects; development of lab practices according topics covered in class.
Learning Activities	Exercises in class and homework and their respective interpretation; digital simulation exercises, various activities on digital platforms online.

6 Sinusoidal ana	Ilysis in steady state 5 hours			
Specific D	evelop the analysis in the frequency domain of sinusoidal powered circuits.			
Objective:				
6.1 Complex expo	pnential function			
6.2 The phasor co	pncept			
6.3 Phasorial rela	tions to R, L and C elements.			
6.4 Impedance ar	nd admittance.			
6.5 Kirchoff laws	6.5 Kirchoff laws employing phasors.			
Readings and oth	er Readings to complement the analyzed topics			
resources				
Teaching Method	ologies Exhibition topics by teacher and/or students			
Learning Activitie	s Exercises in class and homework and their respective interpretation, various activities on			
-	digital platforms online.			

7 Methods an	d Techniques in Permanent Sinusoidal Analysis	15 hours
Specific	Develop the main methods and techniques of linear circuits using phasor tool. Identify the most	
Objective:	appropriate method or technique.	
7.1 Node volta	ge analysis	
7.2 Mesh curre	ent analysis	
7.2 Superposit	ion theorem	
7.3 Source trai	nsformation	
7.4 Thevenin's	equivalent	
7.5 Norton's ed	quivalent	
7.6 Phasor dia	grams	
7.7 Frecuency	response	
Readings and	other Readings for research concepts and to implement and strengthen the topics discuss	sed in
resources	class	

Universidad Autónoma de San Luis Potosí College of Engineering Mechanical and Electrical Department Analytical Program

Teaching Methodologies	Exhibition topics by teacher and/or students; use of didactic techniques like teamwork,			
	Learning based in problems and/or projects; development of lab practices according topics			
	covered in class.			
Learning Activities	Exercises in class and homework and their respective interpretation; digital simulation			
	exercises, various activities on digital platforms online.			

8 Transient analysis of RLC circuits.				
Specific Analyz	Analyze the transitional stage of the RLC circuits in their series and / or parallel configurations.			
Objective:				
8.1 Natural response of a parallel RLC circuit				
8.2 Forms of a Natural response of a parallel RLC circuit				
8.3 Step response of a parallel RLC circuit				
8.4 Natural and step response of a series RLC circuit				
8.5 Response to a sinusoidal function of a series and / or parallel RLC circuit				
Readings and other	Readings for research concepts and to implement and strengthen the topics disc	ussed in		
resources	class			
Teaching Methodolog	ies Exhibition topics by teacher and/or students; development of a project that integra	ates the		
	knowledge of the topic; development of lab practices according topics covered in	class.		
Learning Activities	Exercises in class and homework and their respective interpretation; digital simula	ation		
	exercises, various activities on digital platforms online.			

E) TEACHING AND LEARNING METHODOLOGIES

- In class they will develop individually and team exercises topics to promote abstract and analytical reasoning.
- Some teaching techniques that encourage meaningful learning are used.
- Management, search and interpreting of information related to the topics will be promoted.
- The use of ICTs will be promoted through homework or projects.

F) EVALUATION CRITERIA:

Evaluation:		Schedule	Suggested Form of Evaluation and weighing	Topics
First Partial exam				
Written exam:	80%			
Problems, group excercises:	20%	Session 16	20%	Topics 1 y 2
Total	100%			
Second Partial exam				
Written exam:	80%		20%	
Problems, Simulations:	20%	Session 32		Topics 2 y 3
Total	100%			
Third Partial exam				
Written exam:	80%	Session 48	20%	Topic 4
Problems, Simulations:	20%			
Total	100%			
Fourth Partial exam				
Written exam:	80%	Session 64	20%	Topics 5, 6 y 7
Problems, group exercises:	20%			
Total	100%			
Fifth Partial exam				
Written exam:	80%	Session 80	20%	Topic 7 y 8

Universidad Autónoma de San Luis Potosí College of Engineering Mechanical and Electrical Department Analytical Program

Problems, group exercises: 20% Total 100%			
Total	16 weeks		100%
Ordinary Exam		Average of the 5 partial grades	
Lab		Needed to pass the subject	
Extraordinary exam		Written theoretical exam of all units 100%	
Title exam		Written theoretical exam of all units 100%	
Regularization exam		Written theoretical exam of all units 100%	

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES Main Books

- Dorf Svoboda, "Circuitos Eléctricos", Alfaomega, 8ª Edición, 2011
- Hayt y Kemerly, "Análisis de Circuitos Eléctricos", Mc Graw-Hill, 8ª Ed, 2012
- Boylestad Robert L., "Introducción al Análisis de Circuitos", Pearson/Prentice Hall, 12ª Ed, 2012
- Irwin J. David, "Análisis Básico de Circuitos en Ingeniería", Limusa Wiley, 6ª Ed, 2006

Complementary Books

- Carlson A. Bruce, "Circuitos", Thomson Learning, 1ª Ed, 2000
- Edminister Joseph, "Circuitos Eléctricos Serie Schaum", Mc Graw-Hill 3ª Edición

Internet Links

http://www.ieee-virtual-museum.org http://www.orcad.com http://www.scilab.org http://www.mathworks.com http://www.pearsonbv.com http://www.mheducation.com