

A) COURSE

Course Id:	Course
5518	Electrical Circuits B

Class Hours per Week	Lab hours per week	Complementary practices	Credits	Total hour course
4	2	4	10	64 theory 32 practice

A) GENERAL COURSE INFORMATION

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:	V			V	
Course Type					
(Required/Elective)	Required			Required	
Prerequisite	Electrical Circuits			Electrical	
Course:	А			Circuits A	
CACEI	CI			CI	
Classification:					

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of:													
Develop techniques and proc	edures to solv	e AC	circuits	in	steady	state.	Interpret	and	analyze	the	results	of	the
different techniques and procedures applied to AC circuits.													

D) TOPICS (CONTENTS AND METHODOLOGY)

1 One phase power	14 hours
Specific Calculate	the power of a single phase AC circuit
Objective:	
1.1 Snap and average	power
1.2 Complex power	
1.3 Triangle of powers	
1.4 Power factor Comp	pensation
1.5 Effective value of a	voltage and current signal
1.6 Single phase powe	er measurement
1.7 Theorem of maxim	um power transfer
1.8 Power in resonant	circuits
1.8.1 Series resonance	
1.8.2 Parallell resonan	ce
Readings and other	Readings to investigation of concepts, as well as to complement and strengthen the
resources	topics discussed in class.
<u> </u>	· •

Teaching methods	Exhibition topics by teacher and / or students; use of some didactic techniques like teamwork, learning based in problems and/or projects; development of lab practices according topics covered in class.
Learning activities	Exercise class and homework, as well as them respective interpretation of results; digital simulation exercises, different activities in digital platforms on the net.

2.- Magnetically Coupled Circuits

z Magnetically	y Coupled Circuits 14 hours
Specific	Evaluate models and applications of magnetically coupled circuits.
Objective:	
2.1 Calculatir	ng the self and mutual inductance
2.2 Coupling	Coefficient
2.3 Polarity m	narks in coupled coils
2.4 Calculation	on of power and energy in coupled coils
2.5 Ideal pow	ver transformer model
2.6 transform	nation relation
2.7 Impedance	ces referred to the ideal power transformer
2.8 Voltage, o	current calculating referred to the power transformer
2.9 Power ca	Iculating in the ideal power transformer
Readings and o	other Readings to investigation of concepts, as well as to complement and strengthen the
resources	topics discussed in class
Teaching meth	ods Exhibition topics by teacher and / or students; use of some didactic techniques lik
	teamwork, learning based in problems and/or projects; development of lab practice
	according topics covered in class.
Learning activi	ties Exercise class and homework, as well as them respective interpretation of results
	digital simulation exercises, different activities in digital platforms on the net.

3.- Balanced Three-phase circuits 14 hours Analyze the techniques and procedure to solve balanced three-phase circuits. Specific Objective: **3.1**.- Polyphase systems representation **3.2**.- Configuration: star(3 or 4 lines) and delta(3 lines) **3.3.** Phase sequence and phasor diagrams 3.4.- Transformations star-delta and delta-star 3.5.- Instantaneous power and complex power 3.6.- Triangle power and power factor compensation 3.7.- Three-wire and one-wire diagrams of an electric circuit 3.8.- Balanced circuits calculation by the monophasic model 3.9.- Three-phase power measurement: method of three and two wattmeters 3.10.- Three-phase circuits with coupled impedances Readings and other Readings to investigation of concepts, as well as to complement and strengthen the resources topics discussed in class. Teaching methods Exhibition topics by teacher and / or students; use of some didactic techniques like teamwork, learning based in problems and/or projects; development of lab practices according topics covered in class. Learning activities Exercise class and homework, as well as them respective interpretation of results; digital simulation exercises, different activities in digital platforms on the net.

1 Unhalanaa	l three phase		1 Albaura			
4 Unbalanced	a three-phase	e circuits	14nours			
Objective:	Analyze the	e techniques and procedure to solve unbalanced three-phase circuits.				
4.1 Currents	4.1 Currents and voltages relation in an unbalanced load					
4.2 Analysis	4.2 Analysis by the method of meshes and nodes					
4.3 Three-ph	ase power c	alculation				
4.4 Power fa	ctor vector					
4.5 Power m	easurement	in unbalanced circuits				
4.6 Symmetr	rical compon	ents for unbalanced-balanced circuits				
4.7 Voltages	and currents	s of positive, negative and zero sequence				
4.8 Sequenc	e nets unbal	anced-balanced circuits				
4.9 Power ca	alculation for	symmetrical components				
Readings and	other	Readings to investigation of concepts, as well as to complement and stre	ngthen the			
resources		topics discussed in class.	-			
Teaching meth	nods	Exhibition topics by teacher and / or students; use of some didactic techn	iques like			
		teamwork, learning based in problems and/or projects; development of la	b practices			
		according topics covered in class.				
Learning activ	ities	Exercise class and homework, as well as them respective interpretation c	of results;			
		digital simulation exercises, different activities in digital platforms on the n	et.			
			1			
5 Non-sinuso	idal signals		8hours			
Specific	Interpreting	the voltage, current and power variables, when considering a non-sinuso	idal signal			
Objective:	Objective: at the source or load					
5.1 Effective	value of nor	n-sinusoidal signals				
5.2 Harmonics voltages and currents in monophasic circuits						
5.3 Power and power factor calculation of a non-sinusoidal source and line load						
5.4 Power and power factor calculation of a non-sinusoidal source and nonlinear load						
5.5 Harmonie	5.5 Harmonic total distortion of voltage and current sources					
5.6 Voltage and current harmonics in three-phase circuits						

5.6 Voltage and current r	narmonics in three-phase circuits
Readings and other	Readings to investigation of concepts, as well as to complement and strengthen the
resources	topics discussed in class.
Teaching methods	Exhibition topics by teacher and / or students; use of some didactic techniques like teamwork, learning based in problems and/or projects; development of lab practices according topics covered in class.
Learning activities	Exercise class and homework, as well as them respective interpretation of results; digital simulation exercises, different activities in digital platforms on the net.

E) TEACHING AND LEARNING METHODOLOGIES

- In class they will develop individually and team exercises topics to promote abstract and analytical reasoning.
- The use of teaching techniques will be promoted to encourage meaningful learning in some of the topics of the course are used.
- Management, search and interpreting of information related to the topics will be promoted.
- The use of ICTs will be promoted through homeworks or projects.

F) EVALUATION CRITERIA

Suggested Form of Eve	aluation and	Schedule	Include	Weighing	
First partial evam					
Written exam:	80%				
Homeworks simulations	didactic	4 weeks	Topics 1	25 %	
techniques:	20%			20 /0	
Total	100%				
Second partial exam					
Written exam:	80%				
Homeworks, simulations	, didactic	4 weeks	Topics 2	25 %	
techniques:	20%				
Total	100%				
Third partial exam					
Written exam:	80%	4 weeks	Topics 3, 4	25 %	
Homeworks, projects:					
20%					
Total	100%				
Fourth partial exam					
Written exam:	80%	4 weeks	Topics 4 y 5	25 %	
Homeworks, projects:					
20%					
Total	100%				
Total		16 weeks		100%	
Ordinary exam			It is the average of	f the four partial	
		qualifications			
Lab			Prove necessary to pass the course		
Extraordinary exam			Written theoretical exam of all units		
			100%		
Title exam			Written theoretical	exam of all units	
			100%		
Regularization exam			Written theoretical	exam of all units	
			100%		

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

MAIN BOOKS

- DorfSvoboda, "Circuitos Eléctricos", Alfaomega, 8ª Edición, 2011
- Boylestad Robert L., "Introducción al Análisis de Circuitos", Pearson/Prentice Hall, 12ª Ed, 2012
- Irwin J. David, "Análisis Básico de Circuitos en Ingeniería", Limusa Wiley, 6ª Ed, 2006
- Kerchner y Corcoran, "Circuitos de Corriente Alterna", 2ª Ed, CECSA

Complementary Books

• Hayt y Kemerly, "Análisis de Circuitos Eléctricos", Mc Graw-Hill, 8ª Ed, 2012

- Carlson A. Bruce, "Circuitos", Thomson Learning, 1^a Ed, 2000
- Edminister Joseph, "Circuitos Eléctricos Serie Schaum", Mc Graw-Hill 3ª Edición, 1997

Internet Links

http://www.ieee-virtual-museum.org http://www.orcad.com http://www.scilab.org http://www.mathworks.com http://www.pearsonbv.com http://www.mheducation.com