

16 practice

A) COURSE

Course Id:		Course			
5549		Electrical Power Systems I			
Class Hours per	Lab hours per	Complementary	Credits	Total	hour
Week	week	practices		course	
4	1	4	9	64 clas	S

B) BASIC COURSE FACTS

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:	VIII				
Leven	VIII				
Course Type	Required				
(Required/Elective)					
Prerequisite	Numerical Analysis				
Course:	and Electrical				
	Machines I				
CACEI	IA				
Classification:					

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of: Obtain parameters of transmission lines, and model the main elements of a power system and it's steady-state analysis. Develop the study of power flows.

D) TOPICS (CONTENTS AND METHODOLOGY)

1. Overview of power	system 5 hou				
Specific Pres	Presenting the overview of electrical power systems, calculation per unit and reactance diagram.				
Objective:					
1.1 EPS'es backgr	ound.				
1.2 Definitions.					
1.3 Primary energie	es in the EPS.				
1.4 Structure of a E	iPS.				
1.5 Requeriments	1.5 Requeriments of the EPS.				
1.6 Modeling an EF	PS.				
1.7 Per unit system	1.7 Per unit system.				
Readings and other	Readings and other Reading articles in specialized pages of IEEE y and books specialized at the topic.				
resources	References [1]-[3], introductory chapters.				
Teaching Methodol	ogies Presentation of topics by the professor and presentation by students.				

Learning Activities	Discussion of the topics of unity, simulation using professional programs, laboratory	,
	experiments, exercises and problems resolution and readings.	
2. Synchronous gener	ator	4 hours
Specific Analy	ze the synchronous generator like a fundamental element of the EPS.	
Objective:		
2.1 Introduction to th	e synchronous generator	
2.2 Operation of the	generator in steady and transient state.	
2.3 Cooling systems		
2.4 Excitement and	oltage regulation systems.	
2.5 Frequency/volta	e control.	
2.6 Protection of the	generator	
Readings and other	Internet, references according needs of the unit, consulting and research.	
resources		
Teaching Methodolo	jies Learning oriented to projects	
Learning Activities	Analysis of requirements, research, ideas organization, development of creativity to	formulate
-	possible solutions. Feasibility analysis, creativity and logic to develop selection crite	
	solutions, preliminary elaboration of parts lists, critical components identification, of	uote and
	estimating costs and delivery times, organization and proposal preparation.	
3. Transmission lines	arameters	20 hours

3. Transmission lines parameters 20 hour				
Specific	Calculating parameters of a transmission line according it's geometry			
Objective:				
3.1 Elements th	nat constitute a transmission line.			
3.2 Resistance	and conductance.			
3.3 Inductance	of a monophasic and three-phase line, equivalent spacing between phases.			
3.4 Geometric	mean radius.			
3.5 Inductance	: compound conductive, uneven spacing between phases.			
3.6 Capacitano	ce of a monophasic and three-phase line, equivalent spacing between phases.			
3.7 Capacitanc	e: twisted conductors, uneven spacing between phases.			
3.8 Three-phas	se lines with parallel circuits			
3.9 Mechanical	calculation of the transmission lines.			
Readings and o	ther Internet and references according needs of the unit, counseling and problem solving.			
resources	resources References [1]-[3], calculation of electrical parameters in transmission lines.			
Teaching Metho	Teaching Methodologies Learning oriented to projects			
Learning Activit	Learning Activities Research and information analysis, application of knowledge acquired during career,			
	application of new knowledge acquired during the unit, development of study cases and			
	analysis of results.			

4. Models of tra	4. Models of transmission lines.		
Specific	Develop models in steady state of transmission lines.		
Objective:			
4.1 Represer	ntation of transmission lines.		
4.2 Short line	4.2 Short line model.		
4.3 Medium line model.			
4.4 Large line model.			
4.5 Line constants.			
4.6 Load capacity of the line.			
4.7 Reactive	4.7 Reactive compensation of the line		

Readings and other Internet and references according needs of the unit, counseling and problem solving.	
resources References [1]-[3], Modelating of power systems chapters.	
Teaching Methodologies	Learning oriented to projects
Learning Activities	Problem solving and generation of study cases.

5. Admittance matrix on bar in a EPS (Ybus) 5 hours					
Specific I Objective:	Developing the principles of network topology for obtaining Ybus models.				
5.1 Node and E	ranch admittances				
5.2 Obtaining Y	bus by inspection.				
5.3 Incidence n	5.3 Incidence matrix element-node.				
5.4 Obtaining Y	bus by singular transformations.				
Readings and of	her Internet and references according needs of the project, counseling.				
Teaching Methodologies Learning oriented to projects					
Learning Activit	es Problem and homework solving.				

6. Load flow studies 15 hou			
Specific	Specific Calculate and identify the usefulness of the study of power flows as part of the growth in demand in the		
Objective:	EPS.		
	s to the general problem of power flow study.		
	calculation by Gauss-Seidel method.		
	calculation by Newton-Raphson method.		
	wer and voltage control		
	nd active power control.		
6.6 Power flow b	by fast disengaged method.		
Readings and ot	her Internet and specialized bibliography, counseling and research. References [1]-[5], chapters		
resources	of power flow studies.		
Teaching Methodologies Learning oriented to projects.			
Learning Activiti	ies Creating computer programs, Using specialized computer programs and		
reporting.			

E) TEACHING AND LEARNING METHODOLOGIES

Exhibition themes, analysis and synthesis of such terms, design exercises y simulation in digital programs, Discussion of homework and assignments in groups of students, exams application and project developing. As learning strategy are proposed the following practices to make in 16 hours, to strengthen the skills and knowledge of

this area.

	Name	Objective
1	Synchronus generator and it's controllers.	Knowing how works a generation system and it's components related to control speed, power and voltage.
2	Power system stabilizers	Comparing characteristics of three kinds of power systems stabilizers (PSS) using the Kundur's test system.
3	Calculating impedances of transmission lines	Apply procedure to calculate impedances in transmission lines in sequence components and in the framework using the Dig SILENT Power Factory simulator.
4	Calculating parameters of transmission lines	Calculating parameters of an overhead transmission line and analyze effects in the geometric configuration of the line, the electrical properties of the, size of conductors, it's configuration in bundles, guard wires, skin

		effect, and electrical properties of the conductors.
5	Models of transmission lines	Analyze precision of the different models of transmission line: short line, large line and intermediate line.
6	Power flows 1	Understanding the problem of power flows and associate it with the steady state conditions of electrical nets: four nodes system.
7	Power flows 2	Understanding the problem of power flows and associate it with the steady state conditions of electrical nets: nine nodes system.

F) EVALUATION CRITERIA:

The grade of the subject is the average of 3 partial exams and 1 final ordinary exam. Each evaluation is weighted with the guidelines and requirements of the teacher who teaches the course.

Evaluation:	Schedule	Suggested Form of Evaluation and weighing	Topics
First partial exam Teoric written exam: 75% Homework and presentations: 25% Total: 100%	In the session 16	25%	Unit I, II y III
Segundo examen parcial Teoric written exam: 75% Homework and presentations: 25% Total: 100%	In the session 32	25%	Unit III
Tercer examen parcialTeoric written exam:75%Homework and presentations:25%Total:100%	In the session 48	25%	Unit IV
Cuarto examen parcial Teoric written exam: 75% Project involving the application of the knowledge acquired from I to VI unit 25% Total: 100%	In the session 64	25%	Unit V y VI
Total			100%
Final ordinary Exam	Sum of the percentages obt	ained in each partia	II.
Extraordinary Exam	Written theoretical exam of all units 100%		
Title exam	Written theoretical exam of all units 100%		
Regularization exam	Written theoretical exam of all units 100%		
Another academic activities required.	To have the right for a grade corresponding subject	e is necessary to pa	ss the lab of the

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main Books

[1] Glover, J. D., Sarma, M., & Overbye, T. (2011). Power System Analysis & Design, SI Version. Cengage Learning.

[2] Saadat, H. (2010). Power system analysis. WCB/McGraw-Hill.

Complementary Books

- [1] Grainger, J. J., & Stevenson, W. D. (1994). Power system analysis. New York: McGraw-Hill.
- [2] Brokering W, Palma R., Vargas L.(2088) "Los Sistemas Eléctricos de Potencia (El rayo domado)" 1ª Ed. Pearson Prentice Havll,
- [3] Theodore, W. (2007). Electrical machines, drives and power systems, 6/E. Pearson Education India.

Internet Links

- [1] http://www.cfe.gob.mx
- [2] http://ieeexplore.ieee.org/