

A) COURSE

Course Id:	Course
5610	Industrial automation

Class Hours per Week	Lab hours per week	Complementary practices	Credits	Total hour course
3	2	3	8	48 theory 32 practice

B) GENERAL COURSE INFORMATION

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:				IX	
Course Type (Required/Elective)				Required	
Prerequisite Course:				Hydraulic and pneumatic circuits	
CACEI Classification:				IA	

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of:

The student will be able to analyze and design automation systems used in modern facilities of manufacturing, using programmable logic controllers and electro pneumatic systems.

D) TOPICS (CONTENTS AND METHODOLOGY)

1 Introduction to	1 Introduction to industrial automation 3 hours			
Specific	That the student analyzed different types of technologies to implement an automated process.			
Objective:				
1.1 Automation	concepts.			
1.2 Elements th	at conform an automatic system.			
1.3 Control syst	ems.			
1.4 Control stra	1.4 Control strategies.			
1.5 Analog and	1.5 Analog and digital automation.			
1.6 Wired logic.	1.6 Wired logic.			
1.7 Programme	1.7 Programmed logic.			
1.8 PLC in the a	1.8 PLC in the automation.			
Readings and of	her Resources needed for teaching and learning specifically on this topic, where appropriate.			
resources				
Teaching metho	ds Specific activities on this topic made by the teacher, such as presentation, conducting			
	discussions, practice management, etc.			

Learning activities	Specific activities on this topic made by the students, such as lab practices where will apply the knowledge and develop the abilities to manage both software and hardware, in the automation of systems.
---------------------	--

2 Overview of the programmable logic controllers.		3 hours	
Specific	That the student understand the role that play a programmable logic controller, like control syst	em in an	
Objective:	Objective: automation system, as well as their main operating characteristics.		
2.1 History ba	2.1 History backgrounds and PLC definition.		
2.2 Application fields and PLC advantages.			
2.3 Elements that shape a control system with PLC.			

- 2.4.- External structure.
- 2.4.1.- Compact structure.
- 2.4.2. Modular structure.
- 2.5.- Internal structure of PLC
- 2.5.1.- Central process unit (CPU)

2.5.2.- Memory types. 2.5.3.- Source supply. 2.6.- Input and output interphases (E/S)

Readings and other	Resources needed for teaching and learning specifically on this topic, where appropriate.		
resources			
Teaching methods	Specific activities on this topic made by the teacher, such as presentation, conducting		
	discussions, practice management, etc.		
Learning activities	Specific activities on this topic made by the students, such as lab practices where will apply the knowledge and develop the abilities to manage both software and hardware, in the automation of systems.		

3 Sensors and a	ectuators. 9 hours				
	hat the student understand operating principle, the classification and characteristics of sensors and				
Objective: a	actuators as well as their interaction, connection and installation modules of input and output of the PLCs.				
3.1 All/nothing ir	nputs.				
3.1.1 Clas	sification.				
3.1.2 Princ	ciple of operation.				
3.1.3 Coni	nection to PLC.				
3.2 Analog input	S.				
	3.2.1 Classification.				
	ciple of operation.				
3.2.3 Coni	nection to PLC.				
3.3 Outputs.					
	othing output.				
3.3.2 Anal					
Readings and ot	her Resources needed for teaching and learning specifically on this topic, where appropriate.				
resources					
Teaching methor	ds Specific activities on this topic made by the teacher, such as presentation, conducting				
	discussions, practice management, etc.				
Learning activiti					
	the knowledge and develop the abilities to manage both software and hardware, in the				
	automation of systems.				

4 Language types and PLC programming. 12 hours		
Specific Objective:	That the student develops programming of the different languages.	

- 4.2.- Programming language using ladder diagrams or contact (KOP).
 - 4.2.1.- Defining the elements of a ladder diagram.
 - 4.2.2.- Contact types.
 - 4.2.3.- Timers.
 - 4.2.4.- Accountants.
 - 4.2.5.- Comparators.
 - 4.2.6.- Program implementation.
 - 4.2.7.- Subroutines.
 - 4.2.8.- Pre-programming considerations in KOP.
 - 4.2.9.- Logic and arithmetic operations.
 - 4.2.10.- Programs.
- 4.3.- Programming language by instruction list (AWL).
 - 4.3.1.- Timers.
 - 4.3.2.- Accountants.
 - 4.3.3.- Comparators.
 - 4.3.4.- Programs.
- 4.4.- Programming by function diagrams (FUP).
 - 4.4.1.- Representation of constants and connection bornes.
 - 4.4.2.- Basic functions.
 - 4.4.3.- Special functions.
 - 4.4.4.- Programs.
- 4.5. Overview of the SOFTWARE to PLC's.

Readings and other Resources needed for teaching and learning specifically on this topic, where appropria	
resources	
Teaching methods	Specific activities on this topic made by the teacher, such as presentation, conducting
	discussions, practice management, etc.
Learning activities	Specific activities of this topic that the students will perform, such as practices, readings,
	homework, exercises in class, etc.

- 5.- Handling and installation of automated systems.
- 9 hours That the student acquires the concepts and important aspects to considere for handling and installation of Specific Objective: automation systems. 5.1.- Organization chart of using the PLC. 5.2.- Start up. 5.3.- Programming 5.3.1.- Operation modes of a PLC. 5.3.2.- Service functions of a PLC. 5.4.- Information storage. 5.5.- Input and output installation in the PLC. 5.6.- Installation, commissioning and maintenance of an automated system. 5.6.1.- Environmental conditions. 5.6.2.- Distribution of components in the control panel. 5.6.3.- Cabling. 5.6.4.- Power supply. 5.6.5.- Fine tunning and in service. 5.6.6.- Maintenance. 5.7.- Security in automated systems. Readings and other Resources needed for teaching and learning specifically on this topic, where appropriate.

resources		
Teaching me	thods	Specific activities on this topic made by the teacher, such as presentation, conducting
		discussions, practice management, etc.

Learning activities	Specific activities on this topic made by the students, such as lab practices where will apply
	the knowledge and develop the abilities to manage both software and hardware, in the
	automation of systems.

6 Integrated systems of industrial automation.		2 hours	
Specific That the	That the student gets abilities needed to integration of industrial automation systems.		
Objective:			
6.1 Industrial automatio	n with electro-pneumatic systems.		
6.2 Industrial automatio	n with pneumatic purely.		
6.3 Industrial automatio	n with electro-hydraulic systems.		
6.4 Industrial automatio	n with purely hydraulic systems.		
6.5 Industrial automatio	on with electro-mechanical systems.		
Readings and other	Resources needed for teaching and learning specifically on this topic, where appropriate.		
resources			
Teaching methods	Specific activities on this topic made by the teacher, such as presentation, conductin	ng	
-	discussions, practice management, etc.	-	
Learning activities	Specific activities on this topic made by the students, such as lab practices where will apply		
	the knowledge and develop the abilities to manage both software and hardware, in the		
	automation of systems.		

E) Teaching and learning methodologies

- In class will develop in team and individual, exercises of the topics to promote the abstract and analytical reasoning.
- The use of teaching techniques will be promoted to encourage meaningful learning in some of the topics of the course are used.
- Management, search and interpreting of information related to the topics will be promoted.
- The use of ICTs will be promoted through homework or projects.

F) Evaluation Criteria

Suggested Form of Evaluation and weighing	Schedule	Include	Weighing
First partial exam			
Written exam: 80%			
Homeworks, simulations, didactic	Session 16	Topics 1, 2 y 3	33 %
techniques: 20%			
Total 100%			
Second partial exam			
Written exam: 80%			
Homeworks, simulations, didactic	Session 32	Topics 4	33%
techniques: 20%			
Total 100%			
Third partial exam			
Written exam: 80%	Session 48	Topics 5 y 6	33 %
Homeworks, projects: 20%			
Total 100%			
Total	16 weeks		
	(48 sessions)		
Ordinary exam		The final grade will	be the sum of the
		following stakes:	
		30% exams, 30% I	ab practices and 40%

	project.
Lab	Prove necessary to pass the course.
Extraordinary exam	Written theoretical exam of all units 100%
Title exam	Written theoretical exam of all units 100%
Regularization exam	Written theoretical exam of all units 100%

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main Books

- MANDADO PÉREZ ENRIQUE, Marcos Acevedo J. Fernández Silva C. Arnesto Quiroga J. I., (2009). Autómatas Programables y Sistemas de Automatización, Marcombo S.A., ISBN-13: 978-84267-1575-3.
- GARCÍA MORENO EMILIO, (2000). Automatización de Procesos Industriales, Alfaomega, ISBN: 970-15-0658-8, 380 pp.
- PALLÁS ARENY RAMÓN, (2005). Sensores y Acondicionadores de Señal, 4ª Ed., Marcombo S.A., ISBN: 8426713440.
- BALCELLS JOSEPH, ROMERAL JOSÉ LUÍS, (2000). Autómatas Programables, 1^a Ed., Marcombo, S.A., ISBN: 8426710891, 450 pp.
- WEBB JOHN W., REIS RONALD A., (2003). Programmable Logic Controllers, Principles and Applications, 5th Ed., Prentice Hall.
- PIEDRAFITA MORENO RAMÓN, (2004). Ingeniería de la Automatización Industrial, 2ª Ed., Ra-Ma, 712 pp.
- PORRAS CRIADO ALEJANDRO, (2002). Autómatas programables, fundamentos, manejo, instalación y prácticas, Mc Graw Hill.
- BOLTON, WILLIAM, (2010). Mecatrónica: Sistemas de control electrónico en la ingeniería mecánica y eléctrica, 4ª. ed., Alfaomega, ISBN 9786077854326. 608 pp.
- CREUS SOLÉ, ANTONIO, (2007). Neumática e hidráulica, Alfaomega. ISBN: 9789701509036.
- CREUS SOLÉ, ANTONIO, (2010). Instrumentación industrial, Marcombo, 8a. ed., ISBN 978-8426716682.
- DORANTES GONZÁLEZ, et al. (2004). Automatización y control, prácticas de laboratorio, McGraw-Hill Interamericana. ISBN 9789701047941.
- GUTIÉRREZ, DE LA MORA, GALVÁN, CÁRDENAS, (2006). Introducción a la automatización, Amate.
- JOSÉ ROLDAN, VILORIA (2008). Automatismos Industriales, Paraninfo. ISBN: 9788497325790, 423 pp.

Internet Links

http://www.festo.com/ http://www.parker.com/

http://www.smc.com/ http://www.millerfluidpower.com/ http://www.smc.com/ http://www.siemens.com/ http://www.ab.com/ http://www.ab.com/ http://www.gefanuc.com/ http://www.gefanuc.com/ http://www.gefanuc.com/ http://www.schneider-electric.com/ http://www.seperl+fuchs.com/ http://www.smc.com/ http://www.smc.com/ http://www.keyence.com/