



# A) COURSE

| Course Id: | Course              |  |  |  |
|------------|---------------------|--|--|--|
| 5615       | Power Electronics I |  |  |  |
|            |                     |  |  |  |

| Class Hours per Week | Lab hours per week | Complementary | Credits | Total hour  |
|----------------------|--------------------|---------------|---------|-------------|
|                      |                    | practices     |         | course      |
| 3                    | 2                  | 3             | 8       | 48 theory   |
|                      |                    |               |         | 32 practice |

## B) GENERAL COURSE INFORMATION

|                     | EE<br>(IEA)    | ME<br>(IM) | MME<br>(IMA) | EME<br>(IME) | MTE<br>(IMT) |
|---------------------|----------------|------------|--------------|--------------|--------------|
| Level:              | VII            |            |              |              |              |
| Course Type         | Required       |            |              |              |              |
| (Required/Elective) |                |            |              |              |              |
| Prerequisite        | Electronics II |            |              |              |              |
| Course:             |                |            |              |              |              |
| CACEI               | IA             |            |              |              |              |
| Classification:     |                |            |              |              |              |

## C) Course Objective

## At the end of the course, the student will be capable of:

Study the techniques and methods of power electronics, considering the different structures of electronic converters and their applications for controlling flow of electric energy. In this first course the basic principles of operation of the power electronics are addressed. Considering industrial and residential applications: lighting, electronic converters, correction, etc.

## D) TOPICS (CONTENTS AND METHODOLOGY)

| 1 Introduction                                                                   | 3                                                                                                           | 3 hours |  |  |  |  |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|
| Specific Present an                                                              | Present an introduction to power electronics and its interaction with electrical and electronic technology. |         |  |  |  |  |
| Objective:                                                                       |                                                                                                             |         |  |  |  |  |
| 1.1 Applications field.                                                          |                                                                                                             |         |  |  |  |  |
| 1.2 Electronics devices.                                                         |                                                                                                             |         |  |  |  |  |
| 1.3 Basic devices.                                                               |                                                                                                             |         |  |  |  |  |
| 1.4 General applications.                                                        |                                                                                                             |         |  |  |  |  |
| Readings and other                                                               | Readings and researches to complement the topics covered in class                                           |         |  |  |  |  |
| resources                                                                        |                                                                                                             |         |  |  |  |  |
| Teaching Methodologies                                                           | Exhibition topics by teacher and / or students; use of some didactic techniques like                        |         |  |  |  |  |
| teamwork, learning based in problems and/or projects; development of lab practic |                                                                                                             |         |  |  |  |  |
|                                                                                  | according topics covered in class.                                                                          |         |  |  |  |  |
| Learning Activities                                                              | Exercises in class or homework; jobs or projects of research and exercises of digita                        | al      |  |  |  |  |
|                                                                                  | simulation.                                                                                                 |         |  |  |  |  |

# 2.- Power semiconductor devices

8 hours





| Specific                  | It realizes a review of the different semiconductor devices that are in force in the technology sector,                                                                                                             |  |  |  |  |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Objective:                | analyzing their operating characteristics and power levels.                                                                                                                                                         |  |  |  |  |
| 2.1 Power diod            | <del>2</del> 8.                                                                                                                                                                                                     |  |  |  |  |
| 2.2 Silicon cont          | rolled rectifier (SCR).                                                                                                                                                                                             |  |  |  |  |
| 2.3TRIAC y GT             | 0.                                                                                                                                                                                                                  |  |  |  |  |
| 2.4 Power bipo            | ar transistor (BJT).                                                                                                                                                                                                |  |  |  |  |
| 2.5 Power MOS             | FET.                                                                                                                                                                                                                |  |  |  |  |
| 2.6 Insulated G           | ate Bipolar Transistor (IGBT)                                                                                                                                                                                       |  |  |  |  |
| 2.7 Intelligent n         | iodules.                                                                                                                                                                                                            |  |  |  |  |
| Readings and or resources | ther Readings and researches to complement the topics covered in class                                                                                                                                              |  |  |  |  |
| Teaching Metho            | dologies Exhibition topics by teacher and / or students; use of some didactic techniques like teamwork, learning based in problems and/or projects; development of lab practices according topics covered in class. |  |  |  |  |
| Learning Activi           | ies Exercises in class or homework; jobs or projects of research and exercises of digital simulation.                                                                                                               |  |  |  |  |

| 3 Rectifiers                  |                                                                                                        | 16 hours   |
|-------------------------------|--------------------------------------------------------------------------------------------------------|------------|
| Specific Ana                  | lyze the process of converting alternating current to direct current, using rectifier devices.         |            |
| Objective:                    |                                                                                                        |            |
| 3.1 Monophasic u              | controlled rectifiers.                                                                                 |            |
| 3.2 Polyphasic une            | ontrolled rectifiers.                                                                                  |            |
| 3.3 Power factor in           | rectification schemes.                                                                                 |            |
| 3.4 Phase Control             |                                                                                                        |            |
| 3.5 Monophasic co             | ntrolled rectifiers.                                                                                   |            |
| 3.6 Polyphasic cor            | trolled rectifiers.                                                                                    |            |
| 3.7 Current harmo             | nic distortion.                                                                                        |            |
| 3.8 Thermal desig             | l.                                                                                                     |            |
| 3.9 Firing circuits.          |                                                                                                        |            |
| 3.9 Applications.             |                                                                                                        |            |
| Readings and othe             | <b>r</b> Readings and researches to complement the topics covered in class                             |            |
| resources<br>Teaching Methodo | logies Exhibition topics by teacher and / or students; use of some didactic techniques lik             | o toomwork |
|                               | learning based in problems and/or projects; development of lab practices accordin<br>covered in class. |            |
| Learning Activities           | Exercises in class or homework; jobs or projects of research and exercises of dig<br>simulation.       | ital       |

| 4 Converters | CD - CD                                                                                        | 17 hours |
|--------------|------------------------------------------------------------------------------------------------|----------|
| Specific     | Analyze the different conversion schemes DC - DC and its particular aspects of design, control | and      |
| Objective:   | efficiency. the engine control applications on DC are also analyzed.                           |          |





| 4.1 A quadrant buck conver   | ter (type Δ)                                                                                   |
|------------------------------|------------------------------------------------------------------------------------------------|
| 4.2 Two quadrant buck conver |                                                                                                |
| 4.3 Downconverter of four of |                                                                                                |
| 4.4 DC motor control.        | Judurants.                                                                                     |
|                              |                                                                                                |
| 4.5 Upconverter.             |                                                                                                |
| 4.6 Downconverter - elevat   | •                                                                                              |
| 4.7 Other converters (Sépic  |                                                                                                |
|                              | l, fly – back, complete bridge).                                                               |
| 4.9 Firing circuits for MOSF | ET.                                                                                            |
| 4.9 Damping networks and     | switching losses.                                                                              |
| 4.10 Average model.          |                                                                                                |
| 4.11 Control circuits.       |                                                                                                |
| 4.12 Closed loop converters  | S.                                                                                             |
| 4.13 Applications (power su  |                                                                                                |
| Readings and other           |                                                                                                |
| resources                    | Readings and researches to complement the topics covered in class                              |
| Teaching Methodologies       | Exhibition topics by teacher and / or students; use of some didactic techniques like teamwork, |
|                              | learning based in problems and/or projects; development of lab practices according topics      |
|                              | covered in class.                                                                              |
| Learning Activities          | Exercises in class or homework; jobs or projects of research and exercises of digital          |
| J                            | simulation.                                                                                    |
|                              | T                                                                                              |
| 5 Magnetic circuits          | 4 hours                                                                                        |

| 5 Magnetic cir                                                                                                                                                                                                             | cuits                                                                            |                                                                                             | 4 hours |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------|--|
| Specific                                                                                                                                                                                                                   | Knowing the operation and design of magnetic elements used in power electronics. |                                                                                             |         |  |
| Objective:                                                                                                                                                                                                                 |                                                                                  |                                                                                             |         |  |
| 5.1 Ferromagne                                                                                                                                                                                                             | etic materials                                                                   | s of high and low frequency.                                                                |         |  |
| 5.2 Operation a                                                                                                                                                                                                            | and inductors                                                                    | s design.                                                                                   |         |  |
| 5.3 Operation a                                                                                                                                                                                                            | and transforn                                                                    | ners design.                                                                                |         |  |
| Readings and o                                                                                                                                                                                                             | other                                                                            | Readings and researches to complement the topics covered in class                           |         |  |
| resources                                                                                                                                                                                                                  |                                                                                  |                                                                                             |         |  |
| Teaching Methodologies     Exhibition topics by teacher and / or students; use of some didactic techniques like te learning based in problems and/or projects; development of lab practices according to covered in class. |                                                                                  |                                                                                             |         |  |
| •                                                                                                                                                                                                                          |                                                                                  | Exercises in class or homework; jobs or projects of research and exercises of d simulation. | igital  |  |

# E) TEACHING AND LEARNING METHODOLOGIES

- In class they will develop individually and team exercises topics to promote abstract and analytical reasoning.
- The use of teaching techniques will be promoted to encourage meaningful learning in some of the topics of the course are used.
- Management, search and interpreting of information related to the topics will be promoted.
- The use of ICTs will be promoted through homework or projects.

## F) EVALUATION CRITERIA

| Evaluation:        | Schedule   | Suggested Form<br>of Evaluation<br>and weighing | Topics |
|--------------------|------------|-------------------------------------------------|--------|
| First partial exam |            | Written exam                                    |        |
|                    |            | 70%, Homework                                   |        |
|                    | Session 16 | 20%, problems on                                |        |



#### Universidad Autónoma de San Luis Potosí College of Engineering Mechanical and Electrical Department Analytical Program



|                     |            | blackboard 10%                                                      |  |
|---------------------|------------|---------------------------------------------------------------------|--|
| Second partial exam | Session 32 | Written exam<br>70%, Homework<br>20%, problems on<br>blackboard 10% |  |
| Third partial exam  | Session 48 | Written exam<br>70%, Homework<br>20%, problems on<br>blackboard 10% |  |
| Total               |            |                                                                     |  |
| Ordinary exam       |            |                                                                     |  |
| Lab                 |            |                                                                     |  |
| Extraordinary exam  |            |                                                                     |  |
| Title exam          |            |                                                                     |  |
| Regularization exa  | m          |                                                                     |  |

## G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

#### Main Books

 MUHAMMAD HARUM RASHID, Electrónica de Potencia: circuitos, dispositivos y aplicaciones, Pearson Educación. Tercera Edición. 2004.
PSPICE – ORCAD, versión estudiantil.

## **Complementary Books**

- Mohan, Undeland, Robbins, Power electronics: converters, applications and design, Grupo Editorial Iberoamericana, John Wiley Interscience. Tercera edición. 2003.
- John G. Kassakian, Martin F. Schlecht, George C. Verghese, Principles of power electronics, Addison Wesley. 1991
- B. K. Bose, Power electronics and AC drives, Prentice Hall. 1986
- R. G. Holt, Semiconductor Power Electronics, Van Nostrand Reinhold Company Inc
- P. C. Sen, Thyristor DC Drives, John Wiley Interscience

#### Internet Links