

A) COURSE

Course Id:	Course
5616	Power Electronics

Class Hours per Week	Lab hours per week	Complementary practices	Credits	Total course	hour
3	2	3	8	48	

A) COURSE OBJECTIVE

	EE	ME	MME	EME	MTE
	(IEA)	(IM)	(IMA)	(IME)	(IMT)
Level:	VIII				
Course Type	Elective				
(Required/Elective)					
Prerequisite	Power Electronics I				
Course:					
CACEI	IA				
Classification:					

C) General purpose of the Course

At the end of the course, the student will be capable of:
Study processes of power electronics to convert direct current to alternating current, and its industrial application in
electrical machines control. The impact of power electronics in electric energy quality is presented, as well as its
management and operation in electrical networks.

D) TOPICS (CONTENTS AND METHODOLOGY)

1 Inverters	16 Hours		
Specific Analyze	conversion process from CD to CA, controlling frequency and amplitude of the generated		
Objective: voltage			
1.1 Monophasic	inverters of half bridge and complete bridge.		
1.2 Three-phase	inverters.		
1.3 PWM techni	ques.		
1.4 Dead time.			
1.5 Inverters in t	Inverters in fixed voltage and frequency.		
1.6 Inverters in v	Inverters in variable voltage and frequency.		
1.7 Application i	n electric backup systems.		
1.8 Application in AC motors control.			
Readings and other			
resources	internet, references according needs of the unit, consulting and research.		
Teaching Methodologi	es Topics exhibiton by the teacher and/or students; Use of some didactic techniques,		
	discussion and analysis sessions.		
Learning Activities	Class exercises or homework; Research projects and digital simulation exercises.		

Universidad Autónoma de San Luis Potosí College of Engineering Mechanical and Electrical Department Analytical Program

16 Hours

2 ELECTRIC	MACHINES CONTROL 16 Hou	irs	
Specific	Specific Presentation of the concepts of speed control and torque in electric machines, using power convertor		
Objective:	bjective: digital controllers.		
2.1 Co	ontrol Structures to CD machines.		
2.2 Co	Introl Structures to CA machines.		
2.3 Ste	eady state behavior.		
2.4 Nu	lumerical Simulation.		
2.5 Spe	Speed and torque control.		
2.6 Clo	Closed loop system.		
Readings and	l other		
resources			
Teaching Meth	Teaching Methodologies		
Learning Activities			

J LLLOTRIC V			To Hours	
Specific	Specific Analyze the impact in the electric energy quality of operation phenomenons asociated with electronic			
Objective:	/e: conversors and electric machines, as well as its propagation in power systems. Analysis to identification			
	and mitigatio	n Techniques will be presented.		
3.1 Elec	ctrical network	S		
3.2 Qua	ality of electric	energy concepts.		
3.3 Ger	eneration, effects and propagation of harmonic currents.			
3.4 IEE	IEEE recommendations and European regulations.			
3.5 Sys	5 Systems of harmonic currents reduction			
3.6 Pow	i Power factor control			
3.7 Ground maps.				
Readings and other Readings to concept research, as well as complement and strength analyzed in class topics.			lass topics.	
resources				
Teaching Meth	Teaching Methodologies			
Learning Activities				

E) TEACHING AND LEARNING METHODOLOGIES

3 ELECTRIC EVETEME AND ELECTRIC ENERCY OUALITY

Exhibition of topics, analysis and synthesis of exposed concepts, design and simulation exercises in specialized software, homework discussion, exams application and development of laboratory practices.

F) EVALUATION CRITERIA:

5 partial exams, the average of them represents the final grade.

Evaluation:		Schedule	Suggested Form of Evaluation and weighing	Topics
First par	First partial exam			
Partial exam Homework Participation	70% 20% 10%			
Second partial exam				
Partial exam Homework	70% 20%			

Universidad Autónoma de San Luis Potosí College of Engineering Mechanical and Electrical Department Analytical Program

Participation	10%		
Third pa	nrtial exam		
Partial exam	70%		
Homework	20%		
Participation	10%		
Total			100%
Ordinary exam			
Laboratory			
Extraordinary Exam		am	
Title Exam			
Regularization Exam			

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main Books

- Muhammad Harum Rashid, Electrónica de Potencia, Pearson Education-Prentice Hall, 2ª Edición. 2004.
- Daniel W. Hart, Electrónica de Potencia, Prentice Hall, 1ª Edición. 2001.
- IEEE Red Book .- Std. 141-1993.–(Reaff 1999) Electric Power Distribution for Industrial Plants.
- IEEE.- Brown Book .-Std. 399-1997.- Industrial and Commercial Power Systems Analysis.
- PSPICE ORCAD 16.3x, versión estudiantil

Complementary Books

- Ned Mohan, Tore M. Undeland, William P. Robbins, Electrónica de Potencia: Convertidores, aplicaciones y diseño, Mc Graw Hill, 3ª Edición. 2009
- John G. Kassakian, Martin F. Schlecht, George C. Verghese, Principles of Power Electronics, Prentice Hall, 1991.
- Bimal. K. Bose, Power Electronics and AC Drives, Prentice Hall. 1st edition, 2001
- Richard. G. Hoft, Semiconductor Power Electronics, Krieger Publishing Company. 1st Edition, 1991.
- P. C. Sen, Thyristor DC Drives, Krieger Publishing Company. 1st Edition, 1991.