

A) COURSE

Course Id:	Course			
5618	THERMODYNAMICS			
Class Hours nor West	Lab bauna manusaali	Complementary	Cue dite	Total have

Class Hours per Week	Lab hours per week	Complementary practices	Credits	Total hour course
5	1	5	11	80

B) GENERAL COURSE INFORMATION:

	EE	ME	MME	EME	MTE
	(IEA)	(IM)	(IMA)	(IME)	(IMT)
Level:	IV	V		IV	=
Course Type	Required	Required	Required	Required	Required
(Required/Elective)					
Prerequisite	Calculus D	Physics B y	Physics B y	Calculus D	Calculus D
Course:		Calculus D	Calculus D		
CACEI	ES	ES	ES	ES	ES
Classification:					

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of:			
Resolver problemas inherentes a los procesos con gases ideales y vapor de agua, así como la transformación y			
propiedades de la energía en todas sus manifestaciones. También manejará y aplicará matemáticamente las			
expresiones correspondientes a la termodinámica en los diferentes sistemas de unidades.			

D) TOPICS (CONTENTS AND METHODOLOGY)

1.- THE BASICS AND UNIT SYSTEMS.

Objetivo	Students will master the basics on the properties of the substance, as well as units and systems to solve
Especifico:	problems.
1.1 Definition	of Thermodynamics.
1.2 Working S	Substance. Thermodynamic system and types of systems.
1.3 Surface a	nd Volume Control.

- 1.4. Properties, States and thermodynamic processes.
- 1.5. Measurement Units and Systems of Units.
- 1.6. Mass and Weight.
- 1.7. Volume, specific volume, density and specific weight.
- 1.8. Pressure, atmospheric pressure, absolute pressure and gauge pressure.
- 1.9. Temperature and temperature scales.
- 1.10. Archimedes Principle.
- 1.11. Act Zero.
- 1.12 .. Law of Conservation of Mass, types and Open Systems Flow in Pipes.

Readings and other resources	Read the suggested topics of literature, and solve problems indicated by the
	teacher.

8 hrs

Teaching Methodologies		It will be taught by expository sessions by the teacher, problem solving s	It will be taught by expository sessions by the teacher, problem solving sessions		
		and conducting case analysis.	and conducting case analysis.		
Learning Activities Solving exercises and problems, readings and research tasks.					
			40 h a u a a		
2 ENERGY C	ONCEPTS AN	ND THE FIRST LAW OF THERMODYNAMICS	12 noras		
Objetivo	Objetivo Students will master the concepts of the different manifestations of energy, distinguish the difference				
Especifico:	between am	nounts of stored energy and transition, learn and apply the First Law of Thermody	namics and		
	master math	nematical expressions that govern them and to solve problems.			
2.1 Amounts	of stored ener	rgy and amounts of energy in motion.			
2.2 Gravitatio	nal potential e	energy.			
2.3 Kinetic Er	nergy.				
2.4 Internal E	nergy.				
2.5 Labour.	n a Mahila Pr	ordor			
2.0 Working C		ol del			
2.8 - Energy Fl	ow				
2.9 - First Law	of Thermodyr	namics			
2.10 Diagram	and Energy	Balance.			
2.11 Equation	n of Conservat	ation of Energy for the closed system and the open system.			
2.12 Enthalpy	1.				
2.13 Reversit	pility and irreve	rersibility.			
2.14 Specific	heat. Specific	c heat at constant volume and constant pressure.			
2.15specific h	eat. Entropy a	and TS Diagram			
$\int p$	dV	$\int v dP$			
2.16 J	and				
Readings and	other	Read the suggested topics of literature, and solve problems indicated by the teach	her.		
resources					
leaching weth	loaologies	It will be taught by expository sessions by the teacher, problem solving sessions a	ina		
Learning Activ		Conducting case analysis.	a and data		
Learning Activ	lites	solving exercises and problems, readings and research tasks. Collection practice	s and uala		
		anaysis.			
3 - 2 ND I AW (DYNAMICS	6 horas		
Ohietivo	The student	t will know understand and apply the second law of thermodynamics and can solve	problems		
Especifico:			problomo.		
3.1 Different	statements of	f the second law of thermodynamics.			
3.2 Clausius i	nequality.	·····			
3.3 Entropy p	roduction.				
3.4 Availabilit	y energy of a	closed system.			
3.5 Availability energy of an open system.					
3.6 Potion av	ailable heat.				
3.7 Helmontz	and Gibbs fu	inctions.			
Readings and	other	Read the suggested topics of literature, and solve problems indicated by the teach	ner.		

 resources
 It will be taught by expository sessions by the teacher, problem solving sessions and conducting case analysis.

 Learning Activities
 Solving exercises and problems, readings and research tasks. Collection practices and data analysis.

4.- IDEAL GAS AND PURE SUBSTANCE

16 horas

Universidad Autónoma de San Luis Potosí Collegue of Engineering Mechanical and Electrical Department Analytical Program

Objetivo Especifico:	Students will learn and m	recognize the different phases of the substance; distinguish different types of aster the use of tables and diagrams to various substances and phases, an	substances, d can solve		
4 1 - The Ideal	Gas				
4 2 - Ideal Gas	laws				
4 3 - Bovle's L	T = C				
4 4 - 1st Charl	es Law (or Ga	av-lussac n = C			
4 5 - 2nd Chai	des Law (V =	C)			
4 6 - Avogadro'	slaw	0)			
47 - Specific he	ats of an idea	l das			
4.8 Dalton's L	aw of Partial F	Pressures			
4.9 Entropy C	hange of an lo	deal Gas.			
4.10 Tables of	f Gases (cons	ideration of Cp and Cv = $f(T)$.			
4.11., Phase cha	anges at cons	stant pressure.			
4.12 Comparis	son of liquid a	nd vapor curves.			
4.13 Thermod	ynamic Surfa	ces			
4.14 Phase di	agram.				
4.15 Phase ru	le				
4.16 Tables of	f liquid and va	por.			
4.17. Compress	ed-Liquid.				
4.18 Diagrams	4.18 Diagrams Properties.				
4.19 Mollier D	iagram				
4.20 P-H diag	ram				
Readings and o	other	Read the suggested topics of literature, and solve problems indicated by the teach	ner.		
resources					
Teaching Meth	odologies	It will be taught by expository sessions by the teacher, problem solving sessions a conducting case analysis.	ind		
Learning Activ	ities	Solving exercises and problems, readings and research tasks. Collection practice analysis. Management of charts and graphs.	s and data		
5 - PROCESSE			20 horas		

5.- PROCESSES IN FLUIDS.

To acquire the ability to analyze the various thermodynamic processes and can solve problems. Objetivo Especifico:

- 5.1. Isometric Process:
- 5.1.1. Ideal Gas. Analysis under the consideration of constant and variable specific heats.

5.1.2 Vapor.

5.2. - The isobaric process:

- 5.2.1. Ideal Gas. Analysis under the consideration of constant and variable specific heats.
- 5.2.2 Vapor.
- 5.3. The isothermal process:
- 5.3.1. Ideal Gas. Analysis under the consideration of constant and variable specific heats.

5.3.2 Vapor.

- 5. 4. The isentropic process:
- 5.4.1. Ideal Gas. Analysis under the consideration of constant and variable specific heats.

5.4.2 Vapor.

- 5.5. Adiabatic processes. Reversible and irreversible.
- 5.6. The polytropic process.
- 5.6.1. Curves representing the process at the vp and Ts.
- 5.6.2 Analysis polytropic process:
- a). Ideal Gas. Analysis under the consideration of constant and variable specific heats.

b.) - Vapor.

5.7. - Relations volumes and pressures.

Readings and other	Se recomienda leer los temas de la bibliografía sugerida, y resolver problemas indicados por
resources	el maestro.
Teaching Methodologies	Se impartirá mediante sesiones expositivas por el maestro, sesiones de solución de
	problemas y conducción de analisis de casos.
Learning Activities	Los trabajos de investigación, resolución de ejercicios y problemas, lecturas.
	Prácticas de obtención y análisis de datos. Manejo de tablas y gráficas.

6 THERMODYN	AMIC CYCLES 18 horas			
Objetivo S	Students will analyze and apply the principles governing thermodynamic cycles, both power and			
Especifico: e	nergy consumers have the ability to build and analyze and solve problems.			
6 .1 Thermodyn	amic cycles.			
6 .2 The Carnot	Cycle.			
6.3 Volume dis	placed thermal efficiency and mean effective pressure.			
6 .4 Reversed a	ind reversible cycles cycles.			
6.5 The reverse	ed Carnot cycle.			
6.6 The Ericssor	n Cycle and Stirling Cycle (Regenerative Effect).			
6.7 Three Cycles Analysis Process.				
6. 8 Analysis cycle 4 or more processes				
Readings and ot	her Read the suggested topics of literature, and solve problems indicated by the teacher.			
resources				
Teaching Metho	dologies It will be taught by expository sessions by the teacher, problem solving sessions and			
	conducting case analysis.			
Learning Activiti	es Solving exercises and problems, readings and research tasks. Collection practices and data analysis. Management of charts and graphs.			
L				

E) TEACHING AND LEARNING METHODOLOGIES

- a) Conventional exposure of each subject by the teacher, using materials such as board.
- b) Reading scientific articles and outreach.
- c) Research by students.
- d) Exhibition of Projects by students.
- e) Using this software to the forefront.
- f) Company visits

PRACTICES:

For the experiments, they are considered a total of 16 one-hour sessions. Practices to be performed are listed below:

- 1. Standards and safety equipment.
- 2. thermal expansion of substances.
- 3. Use and handling of instruments to measure temperature.
- 4. Use and handling of instruments for measuring pressure.
- 5. First Law of Thermodynamics.
- 6. Specific heat.
- 7. Work without flow.
- 8. Second Law of Thermodynamics.
- 9. Ideal gas law.
- 10. Latent heat of fusion and evaporation.
- 11. Phase changes.

- 12. Pressure dependence of water vapor with temperature.
- 13. Ranking Ideal Invested Simple Cycle.

F) EVALUATION CRITERIA:

Evaluation:	Schedule	Suggested Form of Evaluation and weighing	Topics
1st. Partial Evaluation	16 Sessions	Exam 90%, Tasks 10% (Relative value: 20%)	1
2nd Partial Evaluation	16 Sessions	Exam 90%, Tasks 10% (Relative value: 20%)	2
3rd. Partial Evaluation	16 Sessions	Exam 90%, Tasks 10% (Relative value: 20%)	3
4th. Partial Evaluation	16 Sessions	Exam 90%, Tasks 10% (Relative value: 20%)	4
Final Ordinary Evaluation		100% (Average of the Partial Evaluations)	5 Y 6
Other activities:			
Extraordinary Exam	Week 17 of the semester in course	Exam 100%	Topics 100%
Title Exam	According to the program of the School Secretary.	Exam 100%	Topics 100%
Regularization Exam	According to the program of the School Secretary.	Exam 100%	Topics 100%

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main Books

- 1. FAIRES V.M., Thermodynamics, Macmillan, 6a. ed.
- 2. FAIRES V.M., Problems on thermodynamics , Macmillan, 6th. ed. (Tomo de texto y Tomo de Problemas).
- 3. ENGEL, YUNUS A. & BOLES, MICHAEL A., Termodinámica, Mc. Graw Hill, 4ª. Edición, 2000.
- 4. MORAN, MICHAEL J. & SHAPIRO, HOWARD N., Fundamentos de Termodinámica Técnica, Editorial Reverté, 2^a. Edición, 2004.
- 5. JONES, J.B.& HAWKINGS, G.A., Engineering thermodynamics, an introductory text book, John Wiley & sons, Inc, 2nd edition, New York, 1986.
- 6. JONES J.B. y DUGAN R.E., Ingeniería termodinámica, Prentice Hall, 1997.
- 7. KENNETH WARK, Termodinámica, McGraw-Hill, 4a. Edición.
- 8. LEVENSPIEL O., Fundamentos de termodinámica, Prentice Hall, 1997.

Complementary Books

- 1. BURGHARDT, M. DAVID, Ingeniería Termodinámica, Harper & Row Latinoamericana. 2a. Edición, 1984.
- 2. CARROLL M. L. & MALEEV V. L., Heat power fundamentals, Pitman.
- 3. Loredo Moreleón Luis A., Apuntes de Ingenieria Termica I, Facultad de Ingenieria, UASLP, 2002.
- 4. ZEMANSKY VAN & NESS, Basic engineering thermodynamics, Mc Graw-Hill N. Y. 1976.

Internet Links