

A) COURSE

Course Id:	Course				
5619	THERMAL MACHINES				
			A	The first line of the	

Class Hours per Week	Lab hours per week	Complementary practices	Credits	Total hour course
5	1	5	11	80

B) GENERAL COURSE INFORMATION:

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:		VI	V	V	
Course Type (Required/Elective)		Required	Required	Required	
Prerequisite Course:		Thermodynamics	Thermodynamics	Thermodynamics	
CACEI Classification:		ES	ES	ES	

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of: Recognize and manage the mathematical expressions, tables and graphs relevant and principles required for troubleshooting these applications. Learn to manage the basic principles of heat transfer.

D) TOPICS (CONTENTS AND METHODOLOGY)

1 RETURNS	1 RETURNS 5 hrs				
Specific Stu	dents understand and manage the concepts and procedures for evaluating performance and				
Objective: eff	iciency and can solve problems on them.				
1.1 Labour. Powe	er.				
1.2 Heat output					
1.3 Thermal Perf	ormance.				
1.4 Performance	machine and heat engine.				
1.5 Mechanical p	erformance.				
Readings and oth	er Read the topics suggested bibliography.				
resources					
Teaching Methodologies Exposition in classroom, students questioning, dialogue, solving typical problems, meet laboratory practices, clarification of doubts.					
Learning Activities Do exercises of theme, taken from the suggested bibliography, lab practices and classroom discussion of the results obtained in the laboratory.					

2.- GAS COMPRESSORS

12 hrs

	Students understand and manage the concepts, expressions and solve problems related to the topic.		
Objective:			
2.1 Types of compress	ors. Compression curves.		
2.2 Outdoors. Volumet	ric efficiency. Efficiency compressor.		
2.3 Multistage compres			
2.4 Gas Expanders			
Readings and other	Read the topics suggested bibliography.		
resources			
Teaching Methodologie	Exposition in classroom, students questioning, dialogue, solving typical problems, meet laboratory practices, clarification of doubts.		
Learning Activities	Do exercises of theme, taken from the suggested bibliography, lab practices and classroom discussion of the results obtained in the laboratory. And identifying compression curves.		
3 IGNITION ENGINES	15 hrs		
Spacifia Que el alumne compare algoifique interprete los diferentes tipos de materzo de combustión interpretu			

3 IGNITION ENGINES			
Specific	Specific Que el alumno compare, clasifique, interprete, los diferentes tipos de motores de combustión interna		
Objective:	pjective: sus características de operación comprenda y maneje los conceptos, expresiones y resuelva		
	problemas relacionados con el tema.		
3.1 Otto Cycle.	(Closed and open).		
3.2 Diesel Cycl	e (closed and open).		
3.3 Dual cycle.			
Readings and o	her Read the topics suggested bibliography.	Read the topics suggested bibliography.	
resources			
Teaching Metho	dologies Exposition in classroom, students questioning, dialogue, s laboratory practices, clarification of doubts.	olving typical problems, meet	
Learning Activit	es Do exercises of theme, taken from the suggested bibliogra classroom discussion of the results obtained in the laborat on internal combustion engines.		

4 GAS TURBINES	S 15 hr					
Specific Stu	fic Students understand and manage concepts, expressions and solve problems related to the topic.					
Objective:						
4.1 Brayton Cycle	. Ideal and friction.					
4.2 Regenerative	heating. Efficiency regenerator.					
4.3 Combustors. I	Efficiency.					
4.4 Maximum.						
4.5 Multistage cor	npression.					
4.6 Engines "Jet".						
4.7 Rocket engine	3 S.					
Readings and othe	er Read the topics suggested bibliography.					
resources						
Teaching Methodo	blogies Exposition in classroom, students questioning, dialogue, solving typical problems, meet laboratory practices, clarification of doubts.					
Learning Activities						

5 DIFFUSERS AND NOZZLES.		12 hrs
Specific Objective:	To obtain design features for any nozzle.	

5.1	Properties of th	e fluids.

- 5.2. Stalemate, acoustic velocity and number of Mach.
- 5.3. Types of nozzles.
- 5.4. Diffusers.

5.5 Applications.					
Readings and other	Read the topics suggested bibliography.				
resources					
Teaching Methodologies	Exposition in classroom, students questioning, dialogue, solving typical problems, meet				
	laboratory practices, clarification of doubts.				
Learning Activities Do exercises of theme, taken from the suggested bibliography, lab practices and					
	classroom discussion of the results obtained in the laboratory. Teamwork for obtaining the				
	characteristics of nozzle design.				

6 Steam turbines., cal	primetric pump and cooling systems. 21 hrs				
Specific From v	From water vapor through a heat engine, the student gets working and then their applications. From the				
Objective: work th	e student obtains heat (heating and / or cooling) and their applications.				
6.1 Rankine Cycle.					
6.2 Changes in the Ran	kine cycle.				
6.3 Binary Cycle.					
6.4 Calorimetry Bomb.					
6.5 Features bomb calc	rimeter.				
6.6 Cycles of cooling an	d heating vapor compression				
6.7 Cycle gas compress	ion refrigeration				
6.8 Vacuum Cooling.					
6.9 Refrigerations.					
Readings and other	Read the topics suggested bibliography.				
resources	resources				
Teaching Methodolog	eaching Methodologies Exposition in classroom, students questioning, dialogue, solving typical problems, meet				
	laboratory practices, clarification of doubts.				
Learning Activities	Do exercises of theme, taken from the suggested bibliography, lab practices.				
Presentation of topics related to the subject.					

E) TEACHING AND LEARNING METHODOLOGIES

- a) Conventional exposure of each subject by the teacher.
- b) Problem-based learning.
- c) Cooperative learning.
- d) Study of cases.
- e) Experiments.

PRACTICES:

For the experiments, they are considered a total of 16 one-hour sessions. Practices to be performed are listed below:

- 1. Safety in the laboratory.
- 2. Determination of characteristic curves of a gasoline engine test bench.
- 3. Changes of Energy.
- 4. Compressors.
- 5. Role of the main parts of the internal combustion engine.
- 6. Adjusting the air-fuel mixture in a gasoline engine through the carburetor.
- 7. General knowledge of equipment and measuring instruments for internal combustion equipment.

- 8. Measure the fuel consumption of a diesel engine and its moment of friction.
- 9. Determination of characteristic curves of a diesel engine on a test bench.
- 10. Measure fuel consumption and friction moment.
- 11. Steam turbines.
- 12. Heat transfer in a boiler.
- 13. Failure Analysis and operation of a diesel engine.
- 14. Project.

F) EVALUATION CRITERIA:

Evaluation:	Schedule	Suggested Form of Evaluation and weighing	Topics
1st. Partial Evaluation	16 Sessions	Exam 80%, Tasks 20%	1 y 2
2nd Partial Evaluation	16 Sessions	Exam 80%, Tasks 20%	3
3rd. Partial Evaluation	16 Sessions	Exam 80%, Tasks 20	4
4th. Partial Evaluation	16 Sessions	Exam 80%, Tasks 20	5
5th. Partial Evaluation	16 Sessions	Exam 80%, Tasks 20	6
Final Ordinary Evaluation		100% (Average of the Partial Evaluations)	
Other activities:			
Extraordinary Exam	Week 17 of the semester in course	Exam 100%	Topics 100%
Title Exam	According to the program of the School Secretary.	Exam 100%	Topics 100%
Regularization Exam	According to the program of the School Secretary.	Exam 100%	Topics 100%

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main Books

- 1. FAIRES V. M., Thermodynamics, Macmillan, 6th. ed.
- 2. FAIRES V. M., Problems on thermodynamics, Macmillan, 6th. ed.
- 3. CENGEL, YUNUS A. & BOLES, MICHAEL A. Termodinamica , mc. Graw Hill, 6ª. Ed.
- 4. MORAN, MICHAEL J. & SHAPIRO, HOWARD N. Fundamentos de Termodinámica Tecnica Editorial Reverte 2^a. Edición.
- 5. KENNETH WARK, Termodinámica, McGraw-Hill, 4a. ed.

Complementary Books

- 1. BURGHARDT M. DAVID. Ingeniería Termodinámica, Harper & Row Latinoamericana, 2ª. Ed.
- 2. CARROLL M. L. & MALEEV V. L. Heat Power Fundamentals, Pitman.
- 3. VAN WYLEN, GORDON. Fundamentos de termodinámica. Limusa ,2ª. Ed.
- 4. JONES J. B. & DUGAN R.E., Ingeniería Termodinámica, Prentice Hall
- 5. LEVENSPIEL O., Fundamentos de termodinamica, Pretntice Hall, 1997.
- 6. ZEMANSKY VAN & NESS, Basic engineering thermodynamics, Mc Graw Hill.

Internet Links