

A) COURSE

Course Id:	Course
5632	FLUIDS MECHANICS

Class Hours per Week	Lab hours per week	Complementary practices	Credits	Total hour course
5	1	5	11	80

B) GENERAL COURSE INFORMATION:

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:		VII	IV	V	
Course Type		Required	Required	Required	
(Required/Elective)					
Prerequisite		Thermodynamics	Thermodynamics	Thermodynamics	
Course:			and Dynamic		
CACEI		ES	ES	ES	
Classification:					

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of: Handle and understand the fundamental concepts of fluid mechanics that help him to understand and to analyze the hydraulic and pneumatic systems, actuated by a working fluid. Leaning on the analysis of fluid flow equations and mathematical equations based on: physics, mechanics and thermodynamics.

D) TOPICS (CONTENTS AND METHODOLOGY)

1 FLUID PROPE	RTIES.	6 hours	
	nderstand the physical properties and the main features of the fluids.		
Objective:			
1.1 Molecular strue	cture.		
1.2 Density.			
1.3 Specific gravity			
	y or relative density.		
	1.5 Specific volume.		
1.6 Absolute and kinematic viscosity.			
1.6.1 Energy losses in a moving body immersed in a viscous medium.			
1.6.2 Viscosity Measurements.			
1.7 Surface tension and capillarity.			
· · · ·	1.8 Pressure (concepts).		
1.9 Ideal gas law (Gases at a low pressure).			
	1.10 Thermodynamic relationships in adiabatic flows.		
Readings and oth	ner Read the topics suggested bibliography.		
resources			

Universidad Autónoma de San Luis Potosí College of Engineering Mechanical and Electrical Department Analytical Program

Teaching Methodologies	Exposition in classroom, students questioning, dialogue, solving typical problems, meet laboratory practices, clarification of doubts.
Learning Activities	Do exercises of theme, taken from the suggested bibliography, lab practices and classroom discussion of the results obtained in the laboratory.

2.- FLUID STATICS.

2 FLUID STATIO	CS. 10 hou	rs
Specific U	Inderstand the fundamentals of fluid mechanics.	
Objective:		
2.1 Pressure, den	nsity and height relationships in compressible and incompressible fluids.	
	and pressure measuring devices.	
	t submerged bodies.	
	rved submerged bodies.	
	principle. Buoyancy force.	
2.6 Lineal and an	gular accelerating containers.	
Readings and ot	ther Read the topics suggested bibliography.	
resources		
Teaching Metho		
	laboratory practices, clarification of doubts.	
Learning Activiti	ies Do exercises of theme, taken from the suggested bibliography, lab practices and	
	classroom discussion of the results obtained in the laboratory.	

3 - FLOW OF INCOMPRESSIBLE FLUIDS

3 FLOW OF INCO	OMPRESSIBLE FLUIDS. 9 h	nours
Specific To	o acquaint the student the behavior of a real incompressible fluid flow through the concept of an	ideal
Objective: in	compressible fluid.	
3.1 Streamline the	ory.	
3.2 One-dimension	nal, two-dimensional and three dimensional flow.	
3.3 Continuity equa	ation using the concept of control volume.	
3.4 Euler equation	of motion.	
3.5 Bernoulli equat	tion.	
3.6 Applying the Be	ernoulli equation.	
3.6.1 Torricelli theo	prem.	
3.6.2 Flowmeters.		
Readings and oth	ner Read the topics suggested bibliography.	
resources		
Teaching Method	ologies Exposition in classroom, students questioning, dialogue, solving typical problems, n	neet
	laboratory practices, clarification of doubts.	
Learning Activitie		
	classroom discussion of the results obtained in the laboratory.	

4 LOSSES IN	AN INCOMPRESSIBLE VISCOUS FLOW.	25 hours
Specific	Understand the losses evaluation due to friction, which happens in a viscous fluid flow.	
Objective:		
4.1 Reynolds n	umber.	
4.2 Laminar an	d turbulent flow in ducts.	
4.2.1 Darcy-We	eisbach equation.	
4.3 Losses in d	ucts.	
4.3.1 Moody dia	agram.	
4.4 Problems: h	naving h, Q o D, as unknowns.	
4.5 Flow in pipi	ng systems: Parallel piping and Branch piping.	
4.6 Problems s	olution using generalized computer software.	
4.7 Flow in ope	n channels.	
4.7.1 Most effic	ient section.	

Universidad Autónoma de San Luis Potosí College of Engineering Mechanical and Electrical Department Analytical Program

Readings and other resources	Read the topics suggested bibliography.
Teaching Methodologies	Exposition in classroom, students questioning, dialogue, solving typical problems, meet laboratory practices, clarification of doubts.
Learning Activities	Do exercises of theme, taken from the suggested bibliography, lab practices and classroom discussion of the results obtained in the laboratory.

5 - COMPRESSIBLE FLUID FLOW

5 COMPRESSIB	LE FLUID FLOW. 8 hours
Specific To	acquaint the student the compressible viscous fluid flow behavior trough the concept of ideal fluid
Objective: flo	W.
5.0 First law of the	rmodynamics.
5.1 Sound velocity	
5.2 Bernoulli equat	ion in an adiabatic flow.
5.3 Mach number.	
5.4 Stagnant point	•
5.5 Critical pressu	
	d divergent nozzle.
5.7 Isothermal flow	л.
5.8 Adiabatic flow.	
Readings and oth	er Read the topics suggested bibliography.
resources	
Teaching Method	ologies Exposition in classroom, students questioning, dialogue, solving typical problems, meet
	laboratory practices, clarification of doubts.
Learning Activitie	
	classroom discussion of the results obtained in the laboratory.

6 PRINCIPLE OF LINEAR	& ANGULAR MOMENTUM.	10 hours		
Specific Introduce th	Introduce the student in the basic design of reaction and impulse turbines through velocity diagrams,			
Objective: as well as i	as well as its performance evaluation.			
6.1 Linear momentum equa	tion using the control volume.			
6.2 Angular momentum equ	ation using the control volume.			
6.3 Applications.				
6.3.1 Impulse turbine.				
6.3.2 Reaction turbine.				
6.3.3 Propulsion.				
Readings and other	Read the topics suggested bibliography.			
resources				
Teaching Methodologies	Exposition in classroom, students questioning, dialogue, solving typical problem	ns, meet		
	laboratory practices, clarification of doubts.			
Learning Activities	Do exercises of theme, taken from the suggested bibliography, lab practices.			
	Presentation of topics related to the subject.			

7 LIFT AND DF	RAG.	7 hours			
Specific	Understand the principles of lift and drag on solid objects immersed in a fluid flow.				
Objective:					
7.1 Boundary lay	yer. von Kármán integral momentum equation.				
7.1.1 Boundary I	7.1.1 Boundary layer thickness.				
7.1.2 Laminar ar	7.1.2 Laminar and turbulent boundary layer on a flat plate.				
7.2 Drag.					
7.3 Lift.					
Readings and c	other Read the topics suggested bibliography.				
resources					

Teaching Methodologies		Exposition in classroom, students questioning, dialogue, solving typical problems, meet laboratory practices, clarification of doubts.			
Learning Activities		Do exercises of theme, taken from the suggested bibliography, lab practices. Presentation of topics related to the subject.			
8 DIMENSION	AL ANALYSI	S AND SIMILITUDE. 5 hour			
Specific Objective:	That the stu	lent knows and applied the dimensional analysis, useful in many aspects of engineering.			
8.1 Dimensiona	analysis.				
8.2 Pi Buckingh	am theorem.				
8.3 Common dimensionless parameters.					
8.3.1 Euler number (Inertial force vs Pressure force).					
8.3.2 Reynolds	number (Iner	tial force vs Viscous force).			
8.3.3 Froude number (Inertial force vs Gravitational force).					
8.3.4 Mach number (Inertial force vs Elastic force).					
8.3.5 Weber number (Inertial force vs Surface tension force).					
Readings and other		Read the topics suggested bibliography.			
resources					
Teaching Meth	odologies	Exposition in classroom, students questioning, dialogue, solving typical problems, meet			
		laboratory practices, clarification of doubts.			
Learning Activities		Do exercises of theme, taken from the suggested bibliography, lab practices.			
		Presentation of topics related to the subject.			

E) TEACHING AND LEARNING METHODOLOGIES

- a) The teaching-learning process will take place in a dynamic way; the teacher will be conducting this process and promote the active participation of students.
- b) From the previous reading by the students, the teacher will start the sessions with an introduction to the subject, raise questions, axes discussion and open the debate to the group.
- c) The teacher will explain the development of concepts, techniques or processes provide examples and open a space to raise questions and doubts. He subsequently applied to solve problematic situations students individually, as a team or group, putting into practice the knowledge acquired.
- d) It will be promoted the student reflection and expression of their ideas, questions and views through questions and comments.
- e) Doubts raised will be clarified, the required aspects will deepen or expand the necessary information, making an effort to draw conclusions; in addition to other modalities proposed by the teacher and will be released at the beginning of the course.

PRACTICES:

For the experiments, they are considered a total of 16 one-hour sessions. Practices to be performed are listed below:

- 1. Laboratory and its Regulations.
- 2. Fluid Properties.
- 3. Statics of fluids.
- 4. Forces on submerged surfaces.
- 5. Measuring Instruments.
- 6. Laminar flow and Turbulent Flow.
- 7. Friction losses.
- 8. Losses on Accessories.
- 9. Calculation of pipe networks.

- 10. Losses elastic fluids.
- 11. Linear Momentum.
- 12. Moment of Momentum.
- 13. Drag coefficient.
- 14. Practice proposal per student.

F) EVALUATION CRITERIA:

Evaluation:	Schedule	Suggested Form of Evaluation and weighing	Topics
1st. Partial Evaluation	16 Sessions	Exam 80%, Tasks 20%	1 y 2
2nd Partial Evaluation	16 Sessions	Exam 80%, Tasks 20%	3 y 4
3rd. Partial Evaluation	16 Sessions	Exam 80%, Tasks 20	5
4th. Partial Evaluation	16 Sessions	Exam 80%, Tasks 20	6
5th. Partial Evaluation	16 Sessions	Exam 80%, Tasks 20	7 y 8
Final Ordinary Evaluation		100% (Average of the Partial Evaluations)	
Other activities:			
Extraordinary Exam	Week 17 of the semester in course	Exam 100%	Topics 100%
Title Exam	According to the program of the School Secretary.	Exam 100%	Topics 100%
Regularization Exam	According to the program of the School Secretary.	Exam 100%	Topics 100%

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main Books

- 1. ROBERT L. MOTT, Mecánica de Fluidos aplicada, Pearson, 6a Edición, 2006.
- 2. MUNSON YOUNG OKIISHI, Fundamentos de mecánica de fluidos, Limusa Wiley, 2007.
- 3. F. M. WHITE: Mecánica de Fluidos. McGraw-Hill, 5a Edición, 2004.

Complementary Books

- 1. FOX W.R. MC. DONALD A.T., Introducción a la mecánica de fluidos, Mc Graw-Hill 4a edición, 2000.
- 2. STREETER V.L. WYLE E.B., Mecánica de los fluidos, Mc Graw-Hill 9a Edición, 2000.

Internet Links