

A) COURSE

Course Id:	Course
5641	MECHANICS OF MATERIALS II

Class Hours per Week	Lab hours per week	Complementary practices	Credits	Total hour course
3	0	3	6	48 hours total

B) GENERAL COURSE INFORMATION:

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:		IV	V	V	IV
Course Type (Required/Elective)		Required	Required	Required	Required
Prerequisite Course:		5695	5695	5695	5695
CACEI Classification:		EC	EC	EC	EC

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of:

The development of concepts and methods in the discipline, to determine the stresses and deformations that occur in members structural and machine components, and from acquired knowledge, infer causes of failure as: deformation in excess of the allowable limit, fracture, or unstable behavior of the element.

D) TOPICS (CONTENTS AND METHODOLOGY)

1. STABILITY F	ROBLEMS	8 Hours
Specific Objective:	Student understands the concepts of buckling and bulging and their effect on elements that a columns.	ct as
1.2 Bu 1.3 Ar 1.4 Co	ickling in elastic zone, Euler's equation. ickling in inelastic zone, tetmajer straight line. iother empirical methods for calculation of buckling. ilumns with cross-section and axial load variables. irsion and buckling.	

Universidad Autónoma de San Luis Potosí Collegue of Engineering Mechanical and Electrical Department Analytical Program

Readings and other resources	Books, articles, extra references, Internet.
Teaching Methodologies	Class exposition, exposed concepts analysis, solving exercises, collaborative work, problem based Knowledge, project based Knowledge, brainstorming, forums, round table debates.
Learning Activities	Team work dynamics, homework assignment and their discussion, problem solving, debates, posters, conceptual maps, investigation, summaries, infographics, synoptic squaring.

2. THIN WALLED	ELEMEN	TS 7 Hours		
	Student knows the theory of calculation and design of thin-walled elements, cylindrical vessels, including the states of stress or instability that may occur.			
2.2 Cylinder 2.3 Bending	s, spheres in thin-wa	and circumferential stress. and other geometries. Iled cylinders. n of pressure vessels.		
Readings and ot resources	her	Books, articles, extra references, Internet.		
Teaching Methodologies Class exposition, exposed concepts analysis, solving exercises, collaborative wor problem based Knowledge, project based Knowledge, brainstorming, forums, roundebates.				
Learning Activiti	es	Team work dynamics, homework assignment and their discussion, problem solving, debates, posters, conceptual maps, investigation, summaries, infographics, synoptic squaring.		

3. CURVED EL	EMENTS		13 Hours		
Specific Objective:	Introduce students to the analysis of elements with radius of curvature subject to pure bending under certain conditions.				
3.3 Equatio	al plane and its radial location. ion of bending stress in curved elements. ems of application.				
Teaching Meth	nodologies	Class exposition, exposed concepts analysis, solving exercises, collaborative problem based Knowledge, project based Knowledge, brainstorming, forums, debates.			
Learning Activ	vities	Team work dynamics, homework assignment and their discussion, problem s debates, posters, conceptual maps, investigation, summaries, infographics, s squaring.			

4. THEORY OF ELA	ASTICITY	13 Hours			
	Knowledge of the states of stress and strain at specific points in a system or component, taking into consideration their boundary conditions.				
4.1 Introduction.					
4.2 State of stres	S.				
4.2.1 Unia	rial state of stress.				
4.2.2 Plane	e state of stress.				
4.2.3 Three	e-dimensional state of stress.				
4.3 Main stresse	S.				
4.3.1 Trans	formation of stresses.				
	's circle (applied to stress).				
4.4 State of strai	ns.				
4.5 Main strains					
	sformation of strains.				
4.5.2 Mohr	's circle (applied to deformation)				
Readings and other	Books, articles, extra references, Internet.				
resources					
Teaching Methodol					
	problem based Knowledge, project based Knowledge, brainstorming, for	ums, round table			
	debates.				
Learning Activities	Team work dynamics, homework assignment and their discussion, proble				
	debates, posters, conceptual maps, investigation, summaries, infographic	cs, synoptic			
	squaring.	-			

5. Combined stre	esses seve	eral theories of failure.	14 Hours	
	Students will learn the stress states and existing theories to predict the failure of an item subject to two or more stresses.			
5.4 Failures in	eria. ductile ma ed method fragile ma	s for ductile materials analysis.		
Readings and oth resources	ner	Books, articles, extra references, Internet.		
Teaching Method	lologies	Class exposition, exposed concepts analysis, solving exercises, collaborative problem based Knowledge, project based Knowledge, brainstorming, forums, debates.		
Learning Activitie	es	Team work dynamics, homework assignment and their discussion, problem s debates, posters, conceptual maps, investigation, summaries, info graphics, s squaring.	•	

E) TEACHING AND LEARNING METHODOLOGIES

- a) LECTURE STRATEGY PROPOSING SPECIFIC PROBLEMS FOR GROUP ANALYSIS AND SOLUTION.
- b) EVALUATION EXAMS ARE APPLIED FOR INITIAL STATISTICAL ANALYSIS (WITHOUT KNOWLEDGE) AND FINAL (WITH KNOWLEDGE).
- c) AFTER COMPLETING THIS COURSE PROVIDES AN ANALYSIS OF REAL EXAMPLES OF MAINTENANCE DEPARTMENTS IN THE INDUSTRY.
- d) A VISIT IS SCHEDULED FOR STUDENT TO A COMPANY.

F) EVALUATION CRITERIA:

Evaluation:	Schedule	Suggested Form of Evaluation and weighing	Topics
1er. Evaluación Parcial	Session 16	33 % Total Evaluation Partial evaluation: Exam 90% , Assignments 10%	1 and 2
2º Evaluación Parcial	Session 32	33 % Total Evaluation Partial evaluation: Exam 90% , Assignments 10%	3 and 4
3er. Evaluación Parcial	Session 48	33 % Total Evaluation Partial evaluation: Exam 90% , Assignments 10%	4 and 5
Evaluación Final Ordinario		100% (Average value of the partial evaluations)	
Examen Extraordinario	Week 17 of the semester in progress	100% Exam	100% topics
Examen a título	According to Secretary school setting	100% Exam	100% topics
Examen de regularización	According to Secretary school setting	100% Exam	100% topics

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main Books

Pytel/singer. Resistencia de materiales, cuarta edición ed. Harla, México d.f. 1982

Hibbeler, russell c. Mecánica de materiales, sexta edición pearson, México d.f. 2006

Beer, johnston y dewolf Mecánica de materiales. Cuarta edición. Editorial MCgraw-hill, México 2007

James m. Gere barry J. Mecánica de materiales editorial cengage, abril 2009

Complementary Mecánica de materiales , Ed. Iberoamericana , méxico d.f., 1986 Craig, roy r. Jr.

Mecánica de materiales, segunda edición cecsa, méxico 2002 Riley/sturges/morris

Mecánica de materiales Mdsolids v1.7 con problemas modelo timothy a. Philpot, segunda edición. Norman e. Dowling

Mechanical behavior of materials Engineering methods for deformation, fracture and fatigue

Internet Sites: Moodle Platform Sociedad Americana de Ingenieros Mecánicos: ASME https://www.asme.org

Data Bases: About materials properties. http://www.matweb.com

Fundamental knowledge on Mechanic Engineering materials, unit conversion factors, mechanical design, equations and formulae, fabricating processes, solid mechanics, fluids and mathematics. <u>http://www.efunda.com/home.cfm</u>

Simulators: Simulate Software: MD Solid Simulator