

complementary Total hrs.160.

A) COURSE

Course Id:	Course					
5648	Mechanical Vibrations					
Class Hours per Week	Lab hours per week	Complementary	Credits	Total hour		
		practices		course		
5	0	5	10	80 hrs theory		
				80hrs		

B) GENERAL COURSE INFORMATION:

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:		IV			
Course Type		Required			
(Required/Elective)					
Prerequisite		Calculus D			
Course:		KINEMATICS			
		OF MACHINES			
CACEI		IA			
Classification:					

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of: THE STUDENT WILL BE ABLE TO RECOGNIZE AND IDENTIFY THE DIFERENT VIBRATION SYSTEMS TO ESTABLISH THEM AS A FUNCTION OF THE MACHINE OR MECHANICAL DEVICE. ALSO THE STUDENT WILL BE ABLE TO IDENTIFY CRITICAL OPERATION SITUATIONS OF A MECHANICAL EQUIPMENT OR MACHINE.

D) TOPICS (CONTENTS AND METHODOLOGY)

1. Introduction		Hours
Specific C	OBJECTIVE	: THE STUDENT WILL UNDERSTAND THE FUNDAMENTALS OF VIBRATIONAL
Objective: S	SYSTEMS C	DF ONE DEGREE OF FREEDOM
1.1 FREE VIBRA	TION WITH	OUT DAMPING 1.2 FREE VIBRATION
WITH DAMPING		1.3 FORCED VIBRATION
WITHOUT DAMPING 1.4 FORCED VIBRATION WITH DAMI		1.4 FORCED VIBRATION WITH DAMPING
1.5 CRITICAL FE	CUENCY A	ND VIBRATIONS OF SHAFTS UNDER BENDING LOADS.
Readings and other		
resources		
Teaching Metho	dologies	EXPOSURE OF SUBJECTS OF STUDY OF DIAGRAMS, EXPLANATION OF
		CONCEPTS, MANAGEMENT OF LABORATORY, PROBLEM-SOLVING TECHNIQUES.
		VISITS TO COMPANIES AND RESEARCH WORK

Learning Activities	Dynamics of working in team, assignments, and discussion of these.
	Studies of reproducibility and repeatability, estimation error, uncertainty, calibration.
	Analysis of readings and presentations in Powerpoint.

2. MULTIPLE D	EGREES OF	FREEDOM VIBRATION SYSTEMS		Hours	
Specific	OBJECTIVE	E: THE STUDENT WILL UNDERSTAND AND DEVELOP THE ABILITY TO ANALYZE AND			
Objective:	SOLVE VIBR	RATION SYSTEMS WITH MULTIPLE DEG	REES OF FREEDOM.		
2.1 FREE VIBR	ATION WITH	MULTIPLE DEGREES OF FREEDOM	2.2 FORCED		
VIBRATIONS W	ITH MULTIP	LE DEGREES OF FREEDOM	2.3 MODAL ANALYSI	S OF	
NON-DAMPING	SYSTEMS \	/IBRATIONS IN THE CONTINUUM ROD	VIBRATIONS AXIAL VIBRATIONS OF	RODS	
TORSIONAL VI	BRATIONS C	F RODS STRING VIBRATIONS MEMBRA	ANE VIBRATIONS VIBRATIONS OF PL	ATES	
UNDER BENDI	NG				
Readings and o	Readings and other				
resources		Anicles, books, internet, complementary i	bibliography.		
Teaching Meth	odologies	EXPOSURE OF SUBJECTS OF STUDY	OF DIAGRAMS, EXPLANATION OF		
		CONCEPTS, MANAGEMENT OF LABOF	RATORY, PROBLEM-SOLVING TECHN	VIQUES.	
		VISITS TO COMPANIES AND RESEARC	CH WORK		
Learning Activi	ities	Dynamics of working in team, assignment	ts, and discussion of these.		
		Studies of reproducibility and repeatability	v, estimation error, uncertainty, calibration	on.	
		Analysis of readings and presentations in	Powerpoint.		

3. NON LINEAR	VIBRATION	S Hours			
Specific	OBJECTIVE	BJECTIVE: THE STUDENT WILL UNDERSTAND AND DEVELOP THE ABILITY TO ANALYZE AND			
Objective:	SOLVE CAS	ES OF NON LINEAR VIBRATION SYSTEMS.			
3.1 OSCILLATC	ORS WITH RE	ESTITUTION FORCE OR NON LINEAR SPRING INDEX. FREE OSCILLATION WITHOUT			
DAMPING FOR	CED OSCILL	ATION 3.2 OSCILLATIONS WITH PERIODICAL			
COEFFICIENTS	6 (RHEOLINE	AR)			
Readings and other		Articles books Internet complementary hibliography			
resources					
Teaching Meth	odologies	EXPOSURE OF SUBJECTS OF STUDY OF DIAGRAMS, EXPLANATION OF			
		CONCEPTS, MANAGEMENT OF LABORATORY, PROBLEM-SOLVING TECHNIQUES.			
		VISITS TO COMPANIES AND RESEARCH WORK			
Learning Activ	ities	Dynamics of working in team, assignments, and discussion of these.			
		Studies of reproducibility and repeatability, estimation error, uncertainty, calibration.			
		Analysis of readings and presentations in Powerpoint.			

4. Systems with two or more	degrees of freedom	Hours
Specific		
Objective:		
4.1 Equations of motion of tw	/o-degree-of-freedom systems	
4.2 Free vibration of undamp	ed systems	
4.3 Natural modes of vibratio	n	
4.4 Response to initial excita	tions	
4.5 Beat phenomenon		
4.6 Response of two-degree-	of-freedom systems to harmonic excitations	
4.7 Undamped vibration abso	prbers	
Readings and other	Articles books Internet complementary bibliography	
resources		
Teaching Methodologies	EXPOSURE OF SUBJECTS OF STUDY OF DIAGRAMS, EXPLANATION OF	
	CONCEPTS, MANAGEMENT OF LABORATORY, PROBLEM-SOLVING TECHN	IIQUES.
	VISITS TO COMPANIES AND RESEARCH WORK	

Learning Activities	Dynamics of working in team, assignments, and discussion of these. Studies of reproducibility and repeatability, estimation error, uncertainty, calibration.
	Analysis of readings and presentations in Powerpoint.

5. Distributed-parameter syst	ems	Hours	
Specific			
Objective:			
5.1 Vibration of strings			
5.2 Bending vibration of bean	ns		
5.3 Torsional vibration of sha	fts		
5.4 Membrane vibration			
Readings and other	ngs and other		
resources	Antoles, books, internet, complementary bibliography.		
Teaching Methodologies	EXPOSURE OF SUBJECTS OF STUDY OF DIAGRAMS, EXPLANATION OF		
	CONCEPTS, MANAGEMENT OF LABORATORY, PROBLEM-SOLVING TECHN	IQUES.	
	VISITS TO COMPANIES AND RESEARCH WORK		
Learning Activities	Dynamics of working in team, assignments, and discussion of these.		
_	Studies of reproducibility and repeatability, estimation error, uncertainty, calibratio	n.	
	Analysis of readings and presentations in Powerpoint.		

E) TEACHING AND LEARNING METHODOLOGIES

F) EVALUATION CRITERIA:

Evaluation:	Schedule	Suggested Form of Evaluation and weighing	Topics
1er. Partial Evaluation	Session	Exam, Assignment, Presence	
2º Partial Evaluation	Session	Exam, Assignment, Presence	
3er. Partial Evaluation	Session	Exam, Assignment, Presence	
Final Evaluation Ordinary		100% (average partial evaluations)	
Other Activity:			
Special Exam:	Week 17 of the Semester	100% Exam	100% topics
Special Exam	According to schedule school secretary	100% Exam	100% topics
Regularization Exam	According to schedule school secretary	100% Exam	100% topics

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main Books

SINGIRESU S. RAO, MECHANICAL VIBRATIONS, THIRD EDITION, ADDISON WESLEY PUBLISHING COMPANY, 1995

ANDREW DIMARAGONAS, VIBRATIONS FOR ENGINEERS, SECOND EDITION, PRENTICE HALL, 1996.

WILLIAM T. THOMSON AND MARIE D. DAHLEH, THEORY OF VIBRATION WITH APPLICATIONS, 5TH EDN., PRENTICE HALL

DUBBEL, HANDBOOK OF MECHANICAL ENGINEERING, EDITED BY W. BEITZ AND K.-H. KÜTTNER. ENGLISH EDITION EDITED BY M.J. SHIELDS. SPRINGER VERLAG LONDON LIMITED 1994. Complementary Books

ROCA VILA, R. MECHANICAL VIBRATIONS (VIBRACIONES MECÁNICAS). ED. LIMUSA 1981

HIBBELER R.C., MECHANICAL ENGINEERING: DYNAMICS (INGENIERÍA MECÁNICA: DINÁMICA), PRENTICE HALL, 1996

SÖCHTING, F. BERECHNUNGSMECHANISCHER SCHWINGUNGEN. WIEN: SPRINGER 1959.

MAGNUS, K. SCHWINGUNGEN, 2. AUFL. STTURGART: TEUBNER 1969.

ZIEGLER, G.: MASCHINENDYNAMIK. MÜNCHEN: HANSER 1977 Internet Links