

A) COURSE

Course Id:		Cours	se	
5619	TRANSPORT PHENOMENA			
Class Hours ner Week	Lab hours per week	Complementary	Credits	Total hour

Class Hours per week	Lab nours per week	practices	Credits	course
5	0	5	10	80

B) GENERAL COURSE INFORMATION:

	EE	ME	MME	EME	MTE
	(IEA)	(IM)	(IMA)	(IME)	(IMT)
Level:		VIII	VI	VI	
Course Type		Required	Required	Required	
(Required/Elective)					
Prerequisite		Thermal	Thermal	Thermal	
Course:		machines	machines	machines	
CACEI		ES	ES	ES	
Classification:					

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of:
To acquire knowledge that will enable student to understand the physical and mathematical foundations of the heat
transfer mechanisms for use in practical applications in their professional development.
The student knows and can analyze mixtures of reactive systems (combustion) and nonreactive. (Gases and gas-
vapor mixture)

D) TOPICS (CONTENTS AND METHODOLOGY)

COURSE INTROD	UCTION 5 hour
Specific To	become familiar with the course contents, its objective, methodology, grading politics, textbook, and
Objective: refe	erences.
1.1 Trabajo. Potenc	ia.
1.2 Potencia calorífi	ica.
1.3 Rendimiento tér	mico.
1.4 Rendimiento de	máquina y motor térmico.
1.5 Rendimiento me	ecánico.
Readings and othe	er Read the topics suggested bibliography.
resources	
Teaching Methodo	blogies Exposition in classroom, students questioning, dialogue, solving typical problems, meet
	laboratory practices, clarification of doubts.
Learning Activities	Do exercises of theme, taken from the suggested bibliography, lab practices and
	classroom discussion of the results obtained in the laboratory.

1.- IDEAL GAS MIXTURE AND GAS-VAPOR. (NO REACTIVE SYSTEMS)

12 hrs

Specific	
Objective:	The student learns how to get the properties of a gas mixture.
1.1 Mixture des	scription.
1.2 Mixture pro	perties.
1.3 Gas mixture	es with phase change sustances.
1.4 Dew point.	
1.5 Relative hu	midity.
1.6 Humidity ra	tio.
1.7 Adiabatic sa	aturation.
1.8 Wet bulb te	mperature.
1.9 Psychrome	tric chart.
1.10Elaboration	n of psychrometric ddiagram.
1.11 Psychrom	etic enthalpy, internal energy and1entropy of a gas mixture and vapor.
1.12 Other gas	and vapor mixtures different from air and vapor.
1.13 Stream mi	xtures.
1.14 Cooling to	wers.
Readings and o	ther Read the topics suggested bibliography.
resources	
Teaching Metho	bodologies Exposition in classroom, students questioning, dialogue, solving typical problems, meet
	laboratory practices, clarification of doubts.
Learning Activit	ties Do exercises of theme, taken from the suggested bibliography, lab practices and
	classroom discussion of the results obtained in the laboratory. And identifying
	compression curves.

2 COMBUSTION	(REACTIVE SYSTEMS) 10	hrs
Specific T	o understand how heat can be extracted from combustion.	
Objective:		
2.1 Fuels.		
2.2 Combustion.		
2.3 Chemical equ	ation balance	
2.4 Garavimetric	analysis.	
2.5 Combustion p	roducts.	
2.6 Combustion p	roducts analysis.	
2.7 Heat obtained	from combustion.	
2.8 Adiabatic con	bustion temperature.	
Readings and oth	er Read the topics suggested bibliography.	
resources		
Teaching Method	blogies Exposition in classroom, students questioning, dialogue, solving typical problems, me laboratory practices, clarification of doubts.	eet
Learning Activitie	S Do exercises of theme, taken from the suggested bibliography, lab practices and classroom discussion of the results obtained in the laboratory. Analysis of real proble on internal combustion engines.	ems

3 BEHAVIOR	PRESSURE-VOLUME-TEMPERATURE IN REAL GASES	14 hrs		
Specific	Students learn to operate a real gas.			
Objective:				
3.1 State equa	ation of Van der Walls.			
3.2 Other equ	iations of state (Berthelot, Dieterici).			
3.3 Mixture of	3.3 Mixture of real gases.			
Readings and	other Read the topics suggested bibliography.			
resources				
Teaching Meth	iodologies Exposition in classroom, students questioning, dialogue, solving typical problems, r	meet		
	laboratory practices, clarification of doubts.			

11 hrs

Learning Activities	Do exercises of theme, taken from the suggested bibliography, lab practices and classroom discussion of the results obtained in the laboratory. Analysis of problems
	related to gas turbines.

4.- FUNDAMENTAL CONCEPTS OF HEAT TRANSFER

Specific Understand the fundamental laws governing heat transfer and identify the situations that occurs each one of them.

4.1 Fourier law of heat conduction.

4.2 Newton's law of cooling: Heat convection.

4.3 Stefan Boltzmann Law: Heat Radiation.

4.4 Principle of energy conservation.

4.5 Combined mechanisms.

4.6 General equation of heat diffusion in Cartesian coordinate system, cylindrical and spherical.

4.7 Solution of the heat diffusion equation in one-dimensional systems.

4.8 Steady-state analysis in one-dimensional systems for thermal resistances.

4.9 Analysis in extended surfaces.

4.3 Analysis in extenued sun	
Readings and other	Read the topics suggested bibliography.
resources	
Teaching Methodologies	Exposition in classroom, students questioning, dialogue, solving typical problems, meet
	laboratory practices, clarification of doubts.
Learning Activities	Do exercises of theme, taken from the suggested bibliography, lab practices and
	classroom discussion of the results obtained in the laboratory. Teamwork for obtaining the
	characteristics of nozzle design.

5 HEAT CONE	DUCTION IN	TWO DIMENSIONS	5 hrs
Specific	That student	s learn a numerical method for solving partial differential equations.	
Objective:			
5.1 Solution of t	he heat diffus	sion equation by the finite difference method.	
Readings and	Readings and other Read the topics suggested bibliography.		
resources	resources		
Teaching Methodologies Exposition in classroom, students questioning, dialogue, solving typical problems, mi		, meet	
		laboratory practices, clarification of doubts.	
Learning Activities		Do exercises of theme, taken from the suggested bibliography, lab practices.	
		Presentation of topics related to the subject.	

6 TRANSIENT	HEAT CON	DUCTION	7 hrs
Specific	That the stu	dent identifies the mathematical models corresponding to different situations in tran	isient
Objective:	heat conduc	tion processes.	
6.1 Method for t	thermal condu	uction resistance negligible (Bi<0.1).	
6.2 Spatial effect	cts when (Bi>	0.1).	
6.3 Solution for	a semi-infinite	e solid (Bi>>0.1).	
Readings and	other	Read the topics suggested bibliography.	
resources			
Teaching Meth	odologies	Exposition in classroom, students questioning, dialogue, solving typical problems	, meet
		laboratory practices, clarification of doubts.	
Learning Activ	ities	Do exercises of theme, taken from the suggested bibliography, lab practices.	
		Presentation of topics related to the subject.	

7 CONVECTION	DN.	5 hrs
Specific Objective:	That the student understands the basic concepts of heat convection.	

7.1 Hydrodynamic boundary	layer.			
7.2 Thermal boundary layer	•			
7.3 Convective coefficient c	oncept.			
7.4 Analogy between heat a	nd momentum transfer.			
7.5 Heat convection parameters: Nusselt and Prandtl number.				
Readings and other	Read the topics suggested bibliography.			
resources				
Teaching Methodologies	Exposition in classroom, students questioning, dialogue, solving typical problems, meet			
	laboratory practices, clarification of doubts.			
Learning Activities	Do exercises of theme, taken from the suggested bibliography, lab practices.			
	Presentation of topics related to the subject.			
8 FORCED CONVECTION CORRELATIONS IN EXTERNAL AND INTERNAL FLOW. 8 hrs				
Specific That the stu	ident understand the correlations used in the determination of the convective coefficient in			
Objective: external.				

8.1 Correlations for the flat plate.

8.2 Correlations for a cylinder in cross-flow.

8.3 Correlations for cross flow in a tube bank.

8.4 Correlations for laminar and turbulent flow inside cylindrical tubes.

Readings and other	Read the topics suggested bibliography.		
resources			
Teaching Methodologies	Exposition in classroom, students questioning, dialogue, solving typical problems, meet		
	laboratory practices, clarification of doubts.		
Learning Activities	Do exercises of theme, taken from the suggested bibliography, lab practices.		
-	Presentation of topics related to the subject.		

9 HEAT EXCH	ANGERS.	8 hı	rs
Specific	That students know the different types of heat exchangers and learn the different calculation methods		
Objective:	for the thermal design.		
9.1 Heat exchangers classification.			
9.2 Concentric tubes heat exchangers			
9.3 Heat exchangers calculation by the logarithmic mean difference method.			
9.4 Heat exchangers calculation by the effectiveness and the number of transfer units method.			
Readings and other Read the topics suggested bibliography.			
resources	resources		
Teaching Methodologies		Exposition in classroom, students questioning, dialogue, solving typical problems, meet	
		laboratory practices, clarification of doubts.	
Learning Activities		Do exercises of theme, taken from the suggested bibliography, lab practices.	
F		Presentation of topics related to the subject.	

E) TEACHING AND LEARNING METHODOLOGIES

- a) Conventional exposure of each subject by the teacher.
- b) Analysis of theoretical-practical concepts.
- c) Solution of problems related with the course contents.

F) EVALUATION CRITERIA:

Evaluation:	Schedule	Suggested Form of Evaluation	Topics
		and weighing	

Universidad Autónoma de San Luis Potosí College of Engineering Mechanical and Electrical Department Analytical Program

1st. Partial Evaluation	16 Sessions	Exam 80%, Tasks 20%	1 y 2
2nd Partial Evaluation	16 Sessions	Exam 80%, Tasks 20%	3 y 4
			,
3rd. Partial Evaluation	16 Sessions	Exam 80%, Tasks 20	5
4th. Partial Evaluation	16 Sessions	Exam 80%, Tasks 20	6 y 7
5th. Partial Evaluation	16 Sessions	Exam 80%, Tasks 20	8 y 9
Final Ordinary Evaluation		100% (Average of the Partial	
		Evaluations)	
Other activities:			
Extraordinary Exam	Week 17 of the	Exam 100%	Topics 100%
	semester in course		
Title Exam	According to the	Exam 100%	Topics 100%
	program of the		
	School Secretary.		
Regularization Exam	According to the	Exam 100%	Topics 100%
	program of the		
	School Secretary.		

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main Books

- 1. INCROPERA F., Fundamentos de Transferencia de Calor y Masa, Wiley, 2004.
- 2. MORAN M.J., SHAPIRO H.N., Fundamentos de Termodinámica Técnica, Wiley, 2000.
- 3. FAIRES V.M., Thermodynamics, 6a. ed.
- 4. FAIRES V.M., Problems on thermodynamics, Macmillan, 6th. ed.
- 5. KENNETH WARK, Termodinámica, McGraw-Hill, 4ª ed.
- 6. UNAM, Tablas de vapor, Servicios y representaciones de ingeniería (UNAM).

Complementary Books

- 1. CARROLL M. L. & MALEEV V. L., Heat power fundamentals, Pitman
- 2. JONES, J.B.& HAWKINGS, G.A., Engineering thermodynamics, an introductory text book, John Wiley & sons, Inc, 2nd edition, New York, 1986.
- 3. JONES J.B. y DUGAN R.E., Ingeniería termodinámica, Prentice Hall, 1997.
- 4. LEVENSPIEL O. Fundamentos de termodinámica, Prentice Hall, 1997.
- 5. WOODRUFF E. B. & LAMMERS H.B., Steam plant operation, McGraw-Hill
- 6. ZEMANSKY & VAN NESS, Basic engineering thermodynamics, Mc Graw-Hill N.Y., 1976.
- 7. KARASIKE IGOR, Bombas.

Internet Links