

A) COURSE

Course Id:	Course
5674	Electrical Machines I

Class Hours per Week	Lab hours per week	Complementary practices	Credits	Total hour course
5	2	5	12	80

B) GENERAL COURSE INFORMATION:

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:	VI				
Course Type					
(Required/Elective)	Required				
Prerequisite	Electric Circuits II				
Course:					
CACEI	IA				
Classification:					

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of:
Desarrollar la teoría básica de ambas máquinas eléctricas y sus posibles aplicaciones.

D) TOPICS (CONTENTS AND METHODOLOGY)

1 General classification of electrical machines.			1 hours
Specific	Develop basic theory of both electrical machines and its possible applications.		
Objective:	•	· · · · ·	
Readings and	other	NA	
resources			
Teaching Methodologies		Presentation.	
Learning Activ	ities	NA	

2 Basic principles of transformers			
Specific	Apply basic concepts of electromagnetism to the transformer.		
Objective:			
2.1 Faraday	law.		
2.2 Lenz law.			
2.3 Magnetic circuit.			
2.4 Transforming relations.			
2.5 Ideal Tra	2.5 Ideal Transformer.		

Readings and other resources	Internet, bibliography according needs of the Project.
Teaching Methodologies	Learning oriented to projects
Learning Activities	Analysis of requirements, research, ideas organization, Developing of creativity to formulate solution options. Feasibility, creativity and logic Analysis to develop criteria of selection of solutions, preliminary elaboration of parts list, identification of critical components, cost estimation and delivery times, organization and purpose elaboration.

3 Construction of tra	nsformers.	4 hours		
Specific Identify	dentify materials and construction forms of transformers.			
Objective:				
3.1 Materials: Iron, co	pper, aluminum, Isolation.			
3.2 One phase transfo	prmers: core type, Shell type.			
3.3 Polarity marks in c	one phase transformers.			
3.4 Three phase trans	formers of high power and distribution.			
3.5 Transformer acces	sories.			
3.6 Cooling transforme	er types.			
Readings and other	Internet, bibliography according needs of the Project.			
resources				
Teaching Methodologies	Learning oriented to projects			
Learning Activities	Researching and information analysis, application of knowledge acqui	red during		
	career, application of new knowledge during researching, proves elaboration	oration and		
	results analysis. Individual electronic Portfolio elaboration and weekly	advances		
	reporting (Taking care about orthography and redaction).			

4. Real transfor	rmer 10	hours		
Specific D	Develop basic theory of real transformer.			
Objective:				
4.1 Winding resist	istance and dispersion reactance.			
4.2 Magnetizing	i current.			
4.3 Exact equiva	alent circuit.			
4.4 Simplified eq	quivalent circuit.			
4.5 Phasor diagr	ram.			
4.6 Voltage Reg	4.6 Voltage Regulation.			
Readings and ot	ther Internet, bibliography according needs of the Project.			
resources				
Teaching Method	dologies Learning oriented to projects			
Learning Activiti	ies Manual elaboration of operations and written final report. Oral exposing.			

5. Transform	ers connections	4 hours
Specific	Analyze the environment of transformers (one and three phase) according diverse connection t	ypes.
Objective:		

5.1 Requirements to para	5.1 Requirements to parallel transformer connection.			
5.2 Connection Y-Y.				
5.3 Connection Δ - Δ .				
5.4 Connection Y- Δ or Δ -	Υ.			
5.5 Phase displacement	in Y- Δ or Δ -Y.			
5.6 Scott connection, Zig	5.6 Scott connection, Zig-Zag, T.			
5.7 Power converters connections.				
Readings and other	Internet, bibliography according needs of the Project.			
resources				
Teaching Methodologies	Learning oriented to projects			
Learning Activities	Manual elaboration of operations and written final report. Oral exposing.			

6. Autotransformer and s	6. Autotransformer and special transformers. 3 hours	
Specific Identify par	ticular applications of transformers.	
Objective:		
6.1 Transforming relation	n in autotransformer.	
6.2 Equivalent autotransf	former circuit.	
6.3 Autotransformer impe	edance.	
6.4 Three windings trans	formers.	
6.5 Tap changer		
6.6 Transformers to power	er electronics.	
6.7 Isolation transformers.		
6.8 Measurement transformers.		
6.9 Transformers for arc furnaces.		
Readings and other	Internet, bibliography according needs of the Project.	
resources		
Teaching Methodologies	Learning oriented to projects	
Learning Activities	Manual elaboration of operations and written final report. Oral exposing.	

7. Efficiency an	Id parameterization of the transformer 5 hours		
Specific [Objective: c	Develop the theory of basic parameters of the transformer, as well as its efficiency for its diverse operation forms.		
7.1 Transforme	7.1 Transformer loses.		
7.2 Transform	er efficiency.		
7.3 Open circu	7.3 Open circuit and short circuit tests.		
7.4 Per unit sy	7.4 Per unit systems		
7.5 Overload and operating altitude.			
Readings and of	her Internet, bibliography according needs of the Project.		
resources			
Teaching Metho	dologies Learning oriented to projects		
Learning Activit	es Manual elaboration of operations and written final report. Oral exposing.		

8. Transformers tests		6 hours
Specific	Identify and interpret tests to electrical power transformers.	
Objective:		

- 8.1.- Transformers test classification: field, factory.
- 8.2.- Winding and isolation resistance test.
- 8.3.- Polarity and phase angle test.
- 8.4.- Transformation relation test.
- 8.5.- Temperature elevation test.
- 8.6.- Test oil and gas chromatography.
- 8.7.- Applied voltage and inducted voltage test.

Readings and other	Internet, bibliography according needs of the Project.	
resources		
Teaching Methodologies	Learning oriented to projects	
Learning Activities	Manual elaboration of operations and written final report. Oral exposing.	

9. Dataplate:	power and o	distribution	1 hours
Specific	Identify nominal data of a distribution and a power transformer.		
Objective:	· ·		
Readings and other		Internet, bibliography according needs of the Project.	
resources			
Teaching Methodologies		Learning oriented to projects	
Learning Activities		Manual elaboration of operations and written final report. Oral exposing.	

10. Converting	g principles of electromagnetic energy. 3 hours		
Specific	Apply and develop basic concepts of electromagnetism to the synchronous machine.		
Objective:			
10.1 Converting	g electrical to mechanical energy and vice versa.		
10.2 Induced vo	oltage in a conductor in movement in a magnetic field.		
10.3 Rotary ma	agnetic field theory.		
10.4 Magnetom	10.4 Magnetomotive forces and rotary magnetic field.		
10.5 Generating	g action		
	a lea ann a na a an - a		
Readings and o	other Internet, bibliography according needs of the Project.		
resources			
Teaching Metho	odologies Learning oriented to projects		
Learning Activit	ties Manual elaboration of operations and written final report. Oral exposing.		

11. Construct	tion and classification of synchronous machine. 3 hou	rs	
Specific	Identify the elements that constitute the construction of the synchronous machine, as well as its		
Objective:	classification.		
11.1 Armature	e windings: stator.		
11.2 Windings	s distribution		
11.3 Field wind	11.3 Field windings: rotor.		
11.4Damper w	11.4Damper windings.		
11.5 Damper windings.			
11.6 Excitement systems.			
11.7 Cooling system.			
11.8 Classification according primary motor .			
Readings and	other Internet, bibliography according needs of the Project.		
resources			
Teaching Meth	hodologies Learning oriented to projects		

8 hours

Learning Activities Manual elaboration of operations and written final report. Oral exposing.

12. Smooth poles synchronous generator

Specific Desarrollar y analizar el circuito equivalente del generador de polos lisos, para interpretar su Objective: comportamiento en estado permanente.

12.1.- Dispersion resistance and reactance.

- 12.2.- Magnetisement curve.
- 12.3.- Armor reaction.
- 12.4.- Three-phase circuit of the generator.
- 12.5.- Equivalent circuit of the generator.
- 12.6.- Phasor diagram of the generator.
- 12.7.- Voltage regulation

12.8.- Power and induced torque

Readings and other	Internet, bibliography according needs of the Project.
resources	
Teaching Methodologies	Learning oriented to projects
Learning Activities	Manual elaboration of operations and written final report. Oral exposing.

13. Efficiency	and param	eterization	2 hours
Specific	Develop the necessary tests to obtain characteristic parameters, as well as its efficiency.		
Objective:	•		•
13.1 Generato	or loses diagra	am.	
13.2 Generato	or efficiency.		
13.3 Resistand	13.3 Resistance tests in windings.		
13.4 Open circ	13.4 Open circuit test		
13.5 Short circuit test.			
Readings and	other	Internet, bibliography according needs of the Project.	
resources			
Teaching Meth	odologies	Learning oriented to projects	
Learning Activities Manual elaboration of operations and written final report. Oral exposing.			

14. Operation	of the generator in the power system.	9 hours	
Specific	dentify y analyze diverse operation forms of the generator.		
Objective:			
14.1 Operation	of an isolated generator.		
14.2 Voltage ar	d frequency control.		
14.3 Parallel op	eration of two or more generators.		
14.4 Active and	14.4 Active and reactive power control.		
14.5 Operation of the generator with an electrical network.			
Deedlane and a			
Readings and o	internet, bibliography according needs of the Project.		
resources			
Teaching Metho	dologies Learning oriented to projects		
Learning Activit	ies Manual elaboration of operations and written final report. Oral exposing.		

15. Salient poles generator 4 hours Specific Analyze equivalent circuit of the salient poles generator to interpret its behavior in permanent state.

15.1.- 2 Shafts theory

15.2.- Generator equivalent circuit.

15.3.- Phasor diagram of generator.

15.4.- Power and induced torque

Readings and other	Internet, bibliography according needs of the Project.
resources	
Teaching Methodologies	Learning oriented to projects
Learning Activities	Manual elaboration of operations and written final report. Oral exposing.

3 hours Specific Identify the transient state in a synchronous generator as well as its capacity curves. Objective: 16.1.- Transient state in synchronous generator. 16.2.- Transitional and subtransitional reactances. 16.3.- Capacity curves of the generator.

Readings and other	Internet, bibliography according needs of the Project.
resources	
Teaching Methodologies	Learning oriented to projects
Learning Activities	Manual elaboration of operations and written final report. Oral exposing.

17. Synchronous motor			10 hours		
Specific	Analyze op	/ze operation in permanent state of the synchronous motor.			
Objective:					
17.1 Induced force in a powered conductor.					
17.3 Vector diagram of the motor.					
17.4 Power and inducted torque of the motor.					
17.5 V curve of the motor.					
17.6 Power factor correction					
17.7 Boot methods of the motor.					
17.8 Dataplate					
Readings and other		Internet, bibliography according needs of the Project.			
resources					
Teaching Methodologies		Learning oriented to projects			
Learning Activities		Manual elaboration of operations and written final report. Oral exposing.			

E) TEACHING AND LEARNING METHODOLOGIES

Exhibition of topics: Analysis of the concepts exposed in the course. Using tools like online digital platforms, homework discussion or investigations that stimulate teamwork between students, exams application and development of little projects. The imparting scheme of the course is purposed by more than one teacher, in such a way that at the end it will be evaluated by a project that integrate knowledge and abilities developed in the course.

F) EVALUATION CRITERIA:

Evaluation:	Schedule	Suggested Form of	Topics	
		Evaluation and		
		weighing		
First partial exam		Written exam: 80%	Unit 1, 2 ,3 y 4	
		Homework, projects: 20%	-	
		Total 100%		
Second partial exam		Written exam: 80%	Unit 4 5, 6 y 7	
		Homework, projects: 20%		
		Total 100%		
Third partial exam		Written exam: 80%	Unit 8, 9, 10 Y	
		Homework, projects: 20%	11	
		Total 100%		
Fourth partial exam		Written exam: 80%	Unit 12,13 y 14	
		Homework, projects: 20%		
		Total 100%		
Total	16 weeks		100%	
Ordinary		Average of the four partial gra	ades	
Laboratory		Needed to pass the course		
Extraordinary exam		All units theoretical exam 100%		
Title Exam		All units theoretical exam 100%		
Regularization exam		All units theoretical exam 100%		

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main Books

El ABC de la calidad de energía eléctrica. Gilberto Enríquez Harper. Limusa

La calidad de la energía en los sistemas eléctricos. Gilberto Enríquez Harper. Limusa

Power quality in power systems and electrical machines FUCHS/MASSOM-A-PRESS

Distribution Reliability and Power Quality Dugan, McGranaghan, Santoso Mc Graw Hill

Complementary Books

AC Power Systems Hand Book Jerry C Whitaker 3^a Ed. CRIPRESS

Curso de Ahorro de energía FIDE, CONAE

Harmonics and Power system Francisco de Rosa Marcel

Decker

Standars IEEE: 141 rojo, 142 verde, 1100 esmeralda. 519 Control de armónicas, 493 dorado, 739 bronce

Internet Links

http://www.icase.com.mx/ http://www.sfindustrial.com/ http://www.fide.org.mx/ http://www.conae.gob.mx/wb/ http://www.conuee.gob.mx/ http://www.energia.org.mx/