

A) COURSE

Course Id:	Course				
5678	Modeling and simulation				
Class Hours per Week	l ab hours per	Complementary	Credits	Total	hour

Class Hours per Week	Lab hours per week	practices	Credits	lotal hour course
3	2	3	8	48 Class
				32 practice

A) GENERAL COURSE INFORMATION:

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:	IV				
Course Type	Required				
(Required/Elective)					
Prerequisite	Algebra B				
Course:					
CACEI	CI				
Classification:					

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of: Analyze non sinusoidal periodical functions, as well as utilizing of Laplace transforms for solving linear differential equations that allow representing some physical systems.

D) TOPICS (CONTENTS AND METHODOLOGY)

1. Introduction to Matlab		6 Hours
Specific Analyze the	basic environment for the management of Matlab.	
Objective:		
1.1 Environment of Matlab		
1.2 General purpose comn	nands of Matlab.	
1.3 mathematical functions	s of Matlab.	
1.4 Graphic Visualization i	n Matlab.	
Readings and other	Readings for researching of concepts as well as to complement and strengthen	the topics
resources	discussed in class. Internet, literature tailored to the needs of the subject, consi	ulting and
	research related topics.	
Teaching Methodologies	Exhibition topics by teacher and/or students; use of some didactic techniques; c	liscussion
	and analysis sessions; development of lab practices according topics covered in	class
Learning Activities	Class exercises and homework as well as it's respective results interpretation	on; digital
	simulation exercises, diverse activities in digital platforms.	

2. Functions

6 Hours

Specific De	Develop management functions whose physical quantity changes with time.		
Objective:			
2.1 Definition of f	iunctions		
2.2 Lineal function	on.		
2.3 Unit step fun	iction.		
2.4 Unit impulse f	function.		
Readings and oth	er Readings for researching of concepts as well as to complement and strengthen the		
resources	topics discussed in class. Internet, literature tailored to the needs of the subject,		
	consulting and research related topics.		
Teaching Methode	ologies Exhibition topics by teacher and/or students; use of some didactic techniques; discussion and		
	analysis sessions; development of lab practices according topics covered in class		
Learning Activitie	 Class exercises and homework as well as it's respective results interpretation; digital 		
	simulation exercises, diverse activities in digital platforms.		

3. Fourier	er Series 6 Ho	ours
Specific	Analyze and representing non sinusoidal periodic functions with a Fourier serie.	
Objective:		
3.1 Periodic fu	unctions	
3.2 Fourier Ser	pries	
3.3 Even and o	odd functions	
3.4 Obtaining F	Fourier Coefficient.	
3.5 Matlab appl	plications with non-sinusoidal signals.	
Readings and o	other Readings for researching of concepts as well as to complement and strengthen the	e topics
resources	discussed in class. Internet, literature tailored to the needs of the subject, consulting	ng and
	research related topics.	•
Teaching Metho	odologies Exhibition topics by teacher and/or students; use of some didactic techniques; discussi	ion and
	analysis sessions; development of lab practices according topics covered in class	
Learning Activit	ities Class exercises and homework as well as it's respective results interpretation; of	digital
-	simulation exercises, diverse activities in digital platforms.	-

4. Laplac	ice Transform	6 Hours
Specific	Develop basic theory of Laplace transform.	
Objective:		
4.1 Laplace tr	ransform of elemental functions.	
4.2 Laplace tr	ransform properties.	
4.3Inverse La	aplace Transform	
4.4 Solution wi	vith Matlab	
Readings and	other Readings for researching of concepts as well as to complement and strengthe	en the topics
resources	discussed in class. Internet, literature tailored to the needs of the subject, co	onsulting and
	research related topics.	
Teaching Meth	nodologies Exhibition topics by teacher and/or students; use of some didactic techniques; di analysis sessions; development of lab practices according topics covered in class	scussion and
Learning Activ	vities Class exercises and homework as well as it's respective results interpretatio digital simulation exercises, diverse activities in digital platforms.	n;

5. Laplace Tran	sform Applications	6 Hours
Specific	Use the Laplace transform to solve ordinary differential equations.	
Objective:		

- 5.1.- Solution of linear differential equations of first order.
- 5.2.- Solution of linear differential equations of second and bigger order.
- 5.3.- Solution with Matlab

Readings and other	Readings for researching of concepts as well as to complement and strengthen the topics
resources	discussed in class. Internet, literature tailored to the needs of the subject, consulting and
	research related topics.
Teaching Methodologies	Exhibition topics by teacher and/or students; use of some didactic techniques; discussion and
	analysis sessions; development of lab practices according topics covered in class
Learning Activities	Class exercises and homework as well as it's respective results interpretation;
	digital simulation exercises, diverse activities in digital platforms.

6. Matlab p	Matlab programming and Introduction to Simulink 6 Hours		
Specific A	analyze some Matlab functions, to handle its programming, as well as the definition of basic models	ls in	
Objective: S	Simulink.		
6.1 Structured Fi	unctions		
6.2 Model creation	on with Simulink		
6.3 Simulation pa	arameters		
6.4 Analysis of sir	mulation results.		
Readings and oth	her Internet, bibliography according to the needs of the project, consulting.		
resources			
Teaching Method	lologies Exhibition topics by teacher and/or students; use of some didactic techniques; discuss	sion and	
analysis sessions; development of lab practices according topics covered in class			
Learning Activitie	es Class exercises and homework as well as it's respective results interpretation;		
	digital simulation exercises, diverse activities in digital platforms.		

7. Mathematical	representatio	on of physical systems.	12 Hours	
Specific	Integrate the	Integrate the modeling and simulation of some physical systems.		
Objective:				
7.1 Transfere	nce function			
7.2 Represer	ntation in spac	e state.		
7.3 Modeling	of electrical ar	nd mechanical systems.		
7.4 Application	s in Matlab/Si	mulink		
Readings and	other	Internet, bibliography according to the needs of the project, consulting.		
resources				
Teaching Meth	odologies	Exhibition topics by teacher and/or students; use of some didactic techniques	; discussion	
and analysis sessions; development of lab practices according topics covered in class				
Learning Activities Class exercises and homework as well as it's respective results interpretation;				
		digital simulation exercises, diverse activities in digital platforms.		

E) TEACHING AND LEARNING METHODOLOGIES

- In class will be developed individually and by team, exercises of the topics to promove abstract and analitic reasoning.
- Some teaching techniques that encourage meaningful learning will be used, in some topics of the subject.
- managing, searching and interpreting information related to the topics will be promoted.
- Use of ICT will be promoted, by Homework or projects.

F) EVALUATION CRITERIA:

Evaluation:	Schedule	Suggested Form of Evaluation and weighing	Topics
First Partial exam			
Written exam: 80%			
Homework, simulations, project: 20%	Session 18	33.3 %	Topics 1, 2 y 3
Total 100%			
Second Partial exam			
Written exam: 80%		33.3 %	
Homework, simulations, project: 20%	Session 30		Topics 4 y 5
Total 100%			
First Partial exam			
Written exam: 80%	Session 48	33.3 %	Topics 6 y 7
Homework, simulations, project: 20%			
Total 100%			
Total	16 weeks		100%
Ordinary Final Exam		Average of the 3 partial grades	
Laboratory	It must be accredited to pass the course		
Extraordinary exam		Written theoretical exam of all units 100%	
Title exam	Written theoretical exam of all units 100%		
Regularization exam	Written theoretical exam of all units 100%		

Each evaluation is weighted with the guidelines and requirements of the professor teaching the course. To Pass the Subject is necessary to develop an integrating Project with the knowledge and experiences of another subjects.

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main Books

Análisis de Fourier. Hwei P. Hsu. Ed. Prentice Hall, 1998, ISBN 968 444 356 0. México.

Transformadas de Laplace. Murray R. Spiegel. Series Schaum. Ed. Mc Graw Hill. 2000. ISBN 0 07 060 231 X. México.

Complementary Books

Ingeniería de control moderna. Katsuiko Ogata. Cuarta edición, Ed. Pearson Prentice Hall. ISBN 84 205 3678 4. España.

Internet Links

http://www.mathworks.com/products/matlab/