

A) COURSE

Course Id:	Course			
5687	Mechanical Design B			
Class Hours per Week	Lab hours per week	Complementary	Credits	Total hour

olass hours per week	Lab nours per week	oompiementary	oreans	i otar nour
		practices		course
4	1	4	9	64 hrs Theory 16 hrs. Lab
				80 hrs Total.

B) GENERAL COURSE INFORMATION:

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:	N.A	VII	VIII	IX	VIII
Course Type (Required/Elective)		Obligatory	Obligatory	Obligatory	Obligatory
Prerequisite Course:		Mechanical Design A (5686)	Mechanical Design A (5686)	Mechanical Design A (5686)	Mechanical Design A (5686)
CACEI Classification:		CI	CI	CI	CI

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of:				
Give the student the background and knowledge in order to be able to design and evaluate design proposals, about				
machine elements that were not covered in previous courses, such as gears and couplings.				

D) TOPICS (CONTENTS AND METHODOLOGY)

1. Shafts and a	axles design 16	Hours				
Specific	Objective 1.					
Objective:	The student will be able to conceptualize and design shaft and axles for any device or application.	The				
	design will take into account the stresses and strength, the strains and deformations and dynamic	ign will take into account the stresses and strength, the strains and deformations and dynamic				
	instabilities of the shafts and axles.					
1.1. Genera	alities.					
1.2. Shafts	dimensioning.					
1.3. Materia	als and fabrication.					
1.4. Shaft d	design for deflection.					
1.5. Shaft d	design for dynamic stresses.					
1.6. Critical	I speeds for shafts.					
1.7. Flexible	e and articulated shafts.					
Readings and o	other Course notes, complementary bibliography, internet pages, videos, product cata	logues				
resources	and power point presentations.					
Teaching Metho	Teaching Methodologies Presentation and explanation of topics in class, PPT presentations, student interactions.					
Learning Activi	arning Activities Taking notes during class, problem solving, homework realization, and project					
•	development.					

2. Shaft compon	ents and couplings	8 Hours			
Specific O	bjective 2.				
	how, calculate and select the different types of shaft components and cube-shaft assemblies.				
A	dditionally, to know, calculate and select the different type of shaft couplings and their properties.				
2.1. Keys.					
2.2. Pins.					
2.3. Splined s	hafts.				
2.4. Setscrew	/S.				
2.5. Interferer	nce fit.				
2.6. Positioni	ng elements.				
2.7. Rigid cou	iplings.				
2.8. Flexible of	couplings.				
Readings and ot	her Course notes, complementary bibliography, internet pages, videos, product of	atalogues			
resources	and power point presentations.	-			
Teaching Method	Feaching Methodologies Presentation and explanation of topics in class, PPT presentations, student interactions.				
Learning Activiti	arning Activities Taking notes during class, problem solving, homework realization, and project				
	development.				

3. Clutches and	brakes 10 Hou	ırs		
Specific	Objective 3.			
Objective:	o know the different types and applications of existing clutches and brakes. To select and calculate			
	brake and clutches based on their application.			
3.1. Positive	-contact clutches.			
3.2. Friction	al-contact radial clutches and brakes.			
3.3. Friction	al-contact axial clutches.			
3.5. Friction	materials.			
3.6. Energy	considerations.			
Readings and o	ther Course notes, complementary bibliography, internet pages, videos, product catalogu	les		
resources	resources and power point presentations.			
Teaching Meth	Teaching Methodologies Presentation and explanation of topics in class, PPT presentations, student interactions.			
Learning Activi	Learning Activities Taking notes during class, problem solving, homework realization, and project			
development.				

4. General description of ge	ars	13 Hours		
Specific Objective 4.				
Objective: To know and	Objective: To know and analyze the different types of gears and gear arrays used to transfer power.			
4.1. Types of gears.				
4.2. Gears geometry.				
4.3. Contact ratio.				
4.4. Interference.				
4.5. Gear trains.				
4.6. Gears forces.				
4.7. Gears efficiencies.				
4.8. Gears materials.				
4.9. Gears fabrication.				
Readings and other	Course notes, complementary bibliography, internet pages, videos, product of	catalogues		
resources	and power point presentations.			
Teaching Methodologies	Presentation and explanation of topics in class, PPT presentations, student intera	actions.		
Learning Activities	Taking notes during class, problem solving, homework realization, and project development.			

5. Spur and he	elical gears	8 Hours	
Specific	Objective 5.		
Objective:	To know the characteristics and procedures to analyze and calculate spur and helical gears, which are		
	the simples and most common used gears.		
5.1. Materia	ial selection.		
5.2. Factor	ſS.		
5.3. Gear d	design.		
5.4. Practic	cal considerations.		
5.5. Proble	ems.		
Readings and	other Course notes, complementary bibliography, internet pages, videos, p	product catalogues	
resources	and power point presentations.		
Teaching Meth	Teaching Methodologies Presentation and explanation of topics in class, PPT presentations, student interactions.		
Learning Activ	•		

6. Bevel and we	rm gears		9 Hours
Specific	Dbjective 6.		
Objective:	o know the characteristics and p	procedures to analyze and calculate bevel and worm gears.	
6.1. Gears of	eometry.		
6.2. Gear de	sign.		
6.3. Couplin	is design.		
6.4. Problem	S.		
Readings and o	her Course notes, con	nplementary bibliography, internet pages, videos, product	catalogues
resources			
Teaching Metho	Teaching Methodologies Presentation and explanation of topics in class, PPT presentations, student interactions.		
Learning Activities Taking notes during class, problem solving, homework realization, and project			
-	development.		

E) TEACHING AND LEARNING METHODOLOGIES

- a) Presentation and explanation of topics in class.
- b) Power Point presentations (PPT)
- c) Analysis and synthesis of concepts.
- d) Problem solving.
- e) Homework and discussion.
- f) Team work.
- g) Course project.

F) EVALUATION CRITERIA:

Evaluation:	Schedule	Suggested Form of Evaluation and weighting	Topics
1 st partial evaluation.	Session 16	25 % Total Evaluation Partial evaluation: Exam 90% , Assignments 10%	1
2 nd partial evaluation.	Session 32	25 % Total Evaluation Partial evaluation: Exam 90% , Assignments 10%	2,3
3 rd partial evaluation.	Session 48	25 % Total Evaluation	4

Universidad Autónoma de San Luis Potosí Collegue of Engineering Mechanical and Electrical Department Analytical Program

		Partial evaluation: Exam 90% , Assignments 10%	
4 th partial evaluation.	Session 64	25 % Total Evaluation Partial evaluation: Exam 90% , Assignments 10%	5, 6
Ordinary final evaluation		100% (Average value of the partial evaluations and course project)	
Others activities:	Mec	chanical Design B Laboratory and p	practices
Second chance final exam	Week 17 of the semester in progress	100% Exam	100% topics
Third chance final exam	According to Secretary school setting	100% Exam	100% topics
Regularization Exam	According to Secretary school setting	100% Exam	100% topics

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main bibliography

Budynas Richard G. y Nisbett J. Keith. Diseño en Ingeniería Mecánica de Shigley. 9a. edición. Mc Graw Hill. 2012. ISBN 9786071507716.

Faires Virgil Moring. Diseño de Elementos de Máquinas. 1a edición. Uthea. 1998. ISBN: 9789681842079. Spotts

M. F., Shoup T. E. Elementos de Máquinas. 7a edición. Prentice Hall. 1999. ISBN: 9701702522.

Mott Robert L. Diseño de Elementos de Máquinas. 4a edición. Prentice Hall. 2006. ISBN: 9702608120.

Complementary bibliography

Juvinall Robert C. Diseño de Elementos de Máquinas. 2a edición. Limusa. 2013. ISBN: 9786070504365.

Hall Alfred, Holowenko A., Laughlin H. Machine Design. 1a edición. Schaum's Outline Series. McGraw-Hill. 1968. ISBN: 978-0070255951.

Black Paul H. y Adams O. Eugene. Machine Design. 3a edición. McGraw Hill, 1968. ISBN: 9780070055247.

Norton Robert L. Diseño de Maquinaria. 3a edición. Mc Graw Hill. 2005. ISBN: 9701046560.

Pahl G., Beitz W., Feldhusen J., Grote K. H. Engineering Design: A Systematic Approach. Third edition. Springer Verlag. 2007. ISBN: 978-1-84628-318-5.

Oberg Erik. Machinery's Handbook. 29a edition. Industrial Press. 2012. ISBN: 978-0831129002.

Avallone Eugene A., Baumeister Theodore III. Marks, Manual del Ingeniero Mecánico. 9a edición. 1999. Mc. Graw Hill. ISBN: 9701006623.

Informatics resources

Web-sites of manufactures and suppliers of machine elements.

Videos regarding the function of the different machine elements.

Software CAD: CATIA, SolidWorks, AutoCAD, Unigraphics.