

A) COURSE

Course Id:	Course
5691	Dinamics

Class Hours per Week	Lab hours per week	Complementary practices	Credits	Total hour course
3	2	3	8	80 hrs. total

B) GENERAL COURSE INFORMATION:

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:	IV	III	III	III	III
Course Type (Required/Elective)	Elective	Elective	Elective	Elective	Elective
Prerequisite Course:	Statics (5694) Calculus B (0052)	Statics (5694) Calculus B (0052)	Statics (5694) Calculus B (0052)	Statics (5694) Calculus B (0052)	Statics (5694) Calculus B (0052)
CACEI Classification:	СВ	СВ	СВ	СВ	СВ

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of:

At the end of the course the student would have the ability to analyze different problem matters relative to particle and rigid bodies' movement geometry. Such analysis can be done on a logical and simple mode and at the same time considering diverse causes that promote movement.

D) TOPICS (CONTENTS AND METHODOLOGY)

1 Particle kine	matics	12 hours
Specific	Objective 1: Student would learn curved and linear motion theory for a particle and at the sam	e time
Objective:	will apply and solve several examples for a better understanding.	

2.-Rigid body kinematics

Universidad Autónoma de San Luis Potosí Collegue of Engineering Mechanical and Electrical Department Analytical Program

1.1 Motion equations			
1.1.1 Introduction			
	Position, velocity and acceleration		
1.1.3 Determining the mo	otion of a particle		
1.2 Linear motion of particle	S		
1.2.1 Motion along a stra	ight line		
1.2.2 Motion with constar	nt acceleration		
1.3 Motion components			
1.3.1 Rectangular compo	onents of speed and acceleration		
1.3.1.1 Absolute motion	1		
1.3.1.2 Relative motion			
1.3.2 Projectile motion			
1.3.3 Tangential and non	mal components of acceleration		
Radial and transversal co	emponents of speed and acceleration		
Readings and other	Mecánica vectorial para ingenieros- Dinámica, Beer y Johnston, McGraw Hill.		
resources	Seely, F; Ensign, N, Mecánica analítica para ingenieros, Uteha, México.		
	Mc Grill, D; King, W, Mecánica para ingenieros TOMO II, Grupo editorial iberoamericana.		
México 1991.			
Ingeniería Mecánica, DINÁMICA, R.C. Hibbeler, Prentice Hall/ Pearson.			
Teaching methods Inductive method: going from general to particular knowledge.			
	Group based learning to cope with basic theoretical knowledge.		
Learning activities	Lab practicing to apply concepts taught during class. It is mandatory to present task		
	reports		
1			

Objective sa	bjective 2: The student would be capable enough to understand the rigid body movement and at the ame time make a comparison to differentiate the several planar trajectories to apply the proper quations.
	on with constant angular acceleration linear and angular kinematics
2.1.3 Simple h 2.2 Relative motion	armonic motion
2.2.2 Relative 2.2.3 Coriolis a	acceleration
	nent al motion center of mass
Readings and oth resources	Mecánica vectorial para ingenieros- dinámica, Beer y Johnston, McGraw Hill. Seely, F; Ensign, N, Mecánica analítica para ingenieros, Uteha, México. Mc Grill, D; King, W, Mecánica para ingenieros TOMO II, Grupo editorial iberoamericana. México 1991. Ingeniería Mecánica, DINÁMICA, R.C. Hibbeler, Prentice Hall/ Pearson.
Teaching method	
Learning activitie	Lab practicing to apply concepts taught during class. It is mandatory to present task reports

12 hours

3Center of ma	ss and mome	nts of inertia	15 hours
Specific	ecific Objective 3: The student would learn how to calculate distributed loads on structural elements. Learn		
Objective:	Objective: how to find the center of gravity of different geometrical bodies.		
3.1 Center of n		•	
3.2 Center of n		ime	
3.3 Compound	,		
3.4 Determine	Center of ma	ss of a volume by integrating method	
3.5 Moment of	inertia of a m	ass element	
3.6 Paralell axi	is theorem		
3.7 Moment of	inertia of she	ets	
		ertia of a tridimensional body by integrating method	
Moment of i	nertia of a cor	mpound body	
Readings and	other	Mecánica vectorial para ingenieros- dinámica, Beer y Johnston, McGraw Hill.	
resources		Seely, F; Ensign, N, Mecánica analítica para ingenieros, Uteha, México.	
		Mc Grill, D; King, W, Mecánica para ingenieros TOMO II, Grupo editorial iberoam	ericana.
		México 1991.	
	Ingeniería Mecánica, DINÁMICA, R.C. Hibbeler, Prentice Hall/ Pearson.		
Teaching meth	Teaching methods Inductive method: going from general to particular knowledge.		
Group based learning to cope with basic theoretical knowledge.			
Lab practicing to apply concepts taught during class. It is mandatory to present		sk	
		reports	
I			

4 Particle Dina	mics 15 hours	
	Objective 4: The student will relate force Newton Laws and the mass and acceleration concepts. Will	
	learn about English and International Units Systems.	
4.1 Introduction		
4.2 Newton's L	aws	
4.3 Mathematic	al expression of the second Law of Newton	
4.4 Mass Conc		
	ations of a dot	
	on of a particle	
	notion of a particle	
	sed by a central force	
	w of Gravitation	
Readings and o		
resources	Seely, F; Ensign, N, Mecánica analítica para ingenieros, Uteha, México.	
	Mc Grill, D; King, W, Mecánica para ingenieros TOMO II, Grupo editorial iberoamericana.	
	México 1991.	
	Ingeniería Mecánica, DINÁMICA, R.C. Hibbeler, Prentice Hall/ Pearson.	
Teaching methods Inductive method: going from general to particular knowledge.		
Group based learning to cope with basic theoretical knowledge.		
Learning activity	Lab practicing to apply concepts taught during class. It is mandatory to present task	
	reports	

5 Work and E	nergy	12 hours
Specific	Objective 5: The student will learn and analyze work, energy, power and efficiency concepts.	
Objective:		

5.1 Introduction

- 5.2 Work produced by a force
- 5.3 Work produced by a moment
- 5.4 Kinetic energy of a particle
- 5.5 Work and energy principles
- 5.6 Potential energy
- 5.7 Conservative and none conservative forces
- 5.8 Energy Conservation Principle Power and efficiency

Readings and other	Mecánica vectorial para ingenieros- dinámica, Beer y Johnston, McGraw Hill.
resources	Seely, F; Ensign, N, Mecánica analítica para ingenieros, Uteha, México.
	Mc Grill, D; King, W, Mecánica para ingenieros TOMO II, Grupo editorial iberoamericana. México 1991.
	Ingeniería Mecánica, DINÁMICA, R.C. Hibbeler, Prentice Hall/ Pearson.
Teaching methods	Inductive method: going from general to particular knowledge.
	Group based learning to cope with basic theoretical knowledge.
Learning activities	Lab practicing to apply concepts taught during class. It is mandatory to present task reports

6 Rigid Body D	namics 14 hours
Specific	Objective 6: The student will apply all the previous related principles to understand solid and rigid
Objective:	bodies' motion.
6.1 Introduction	
6.2 Mass Mome	ent of inertia
	on of Solid Rigid Body
6.4 Solid Rigid	Body Energy and Work Principles
6.5 Solid Rigid	Body Force Calculations
6.6 Power as a	n Energy Conservation Principle
6.7 Momentum	and Impulse
Conservation	of Momentum
Readings and o	ther Mecánica vectorial para ingenieros- dinámica, Beer y Johnston, McGraw Hill.
resources	Seely, F; Ensign, N, Mecánica analítica para ingenieros, Uteha, México.
	Mc Grill, D; King, W, Mecánica para ingenieros TOMO II, Grupo editorial iberoamericana.
	México 1991.
	Ingeniería Mecánica, DINÁMICA, R.C. Hibbeler, Prentice Hall/ Pearson.
Teaching methor	Inductive method: going from general to particular knowledge.
	Group based learning to cope with basic theoretical knowledge.
Learning activit	ies Lab practicing to apply concepts taught during class. It is mandatory to present task
	reports

E) TEACHING AND LEARNING METHODOLOGIES

F) EVALUATION CRITERIA:

Evaluation:	Periodicity	Suggested Ponderability to Evaluate	Themes to cover
1er. Partial Evaluation	20 Session	25 % Ponderability Partial Evaluation: Exam 80%, Extra work during class hour 10%, Participating in class hour 10%.	1 y 2

2da. Partial Evaluation	40 Session	25 % Ponderability	3
		Partial Evaluation:	
		Exam 80%, Extra work during	
		class hour 10%, Participating	
		in class hour 10%.	
3er. Partial Evaluation	60 Session	25 % Ponderability	4 y 5
		Partial Evaluation:	
		Exam 80%, Extra work during	
		class hour 10%, Participating	
		in class hour 10%.	
4ta. Partial Evaluation	80 Session	25 % Ponderability	5 y 6
		Partial Evaluation:	
		Exam 80%, Extra work during	
		class hour 10%, Participating	
		in class hour 10%.	
Ordinary Final Evaluation		Partial Evaluation Average	
Extraordinary Exam	17th week of the	100% Exam	100% Themes
	semester		
Title Exam	According Scholar	100% Exam	100% Themes
	Secretariat		
Regularization Exam	According Scholar	100% Exam	100% Themes
	Secretariat		

G) BIBLIOGRAPHY AND INFORMATIC RESOURCES

Basic Text Book

Mecánica vectorial para ingenieros- dinámica Beer y Johnston McGraw Hill 9a. edición 2010

Mecánica analítica para ingenieros Seely, F; Ensign, N Uteha, México Mecánica para ingenieros TOMO II Grupo editorial iberoamericana. México 1992

Complementary

DINÁMICA: Ingeniería Mecánica R.C. Hibbeler Prentice Hall/ Pearson. 10ª. Edición 2004

Internet Sites:

Moodle Platform

Sociedad Americana de Ingenieros Mecánicos: ASME

https://www.asme.org

Data Bases:

About materials properties.

http://www.matweb.com

Fundamental knowledge on Mechanic Engineering materials, unit conversion factors, mechanical design, equations and formulae, fabricating processes, solid mechanics, fluids and mathematics. http://www.efunda.com/home.cfm

Simulate Software:

MD Solid Simulator