

A) COURSE

Course Id:	Course			
5692	Electrotechnology for engineering I			
Class Hours per Week	Lab hours per week	Complementary	Credits	Total hour

Class nours per week	Lab nours per week	Complementary	Credits	rotar nour
		practices		course
4	1	4	9	64 theory
				16 practice

A) GENERAL COURSE INFORMATION

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:		V	V		II
Course Type (Required/Elective)		Required	Required		Required
Prerequisite Course:		135 credits	135 credits		45 credits
CACEI Classification:		СВ	СВ		СВ

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of: That the student analyzes the laws, concepts and fundamental principles of the electricity and magnetism, to understand the electromagnetic phenomena associated with applications of electrical engineering. To check the fundamental laws of electromagnetism, by performing the proposals labs.

D) TOPICS (CONTENTS AND METHODOLOGY)

1 Electric field and Could	omb's law. 5hours		
Specific That the	That the student understand the concepts: electric charge, conductors, insulators, electric charge density,		
Objective: power lin	power lines, and the properties determined by Coulomb's law.		
1.1 Electric charge.			
1.2 Coulomb's law.			
1.3 Electric charge densi	ity.		
1.4 Electric field.			
1.5 Power lines.			
Readings and other	Readings to investigation of concepts, as well as to complement and strengthen the topics		
resources	discussed in class.		
Teaching methods	Exercise class and homework, as well as them respective interpretation of results; digital		
	simulation exercises, different activities in digital platforms on the net.		
Learning activities	Develop of lab practices applying the theory concepts. Practices report, group and		
	individual problem resolution.		

2.- Gauss' law.

4 hours

Specific	That the student acquires others knowledge basic of electrostatic: electric field flow, charges and electric
Objective:	field in a conductor; the relations between charge and field through the Gauss' law application.
2.1 Electric fiel	d flow
2.2 Gauss' law	
2.3 Charges ar	id electric field in an isolated conductor.
2.4 Gauss' law	application.
Readings and	other Readings to investigation of concepts, as well as to complement and strengthen the topics
resources	discussed in class.
Teaching meth	ods Exercise class and homework, as well as them respective interpretation of results; digital
_	simulation exercises, different activities in digital platforms on the net.
Learning activi	ties Develop of lab practices applying the theory concepts. Practices report, group and
-	individual problem resolution.

3 Electric potentia	al. 8hours		
Specific Th	That the student understands the potential concepts, potential difference, relation between potential		
Objective: ar	nd electric field, between energy and electric potential.		
3.1 Potential diffe	rence.		
3.2 Electric poten	tial calculation.		
3.3 Potential grac	lient.		
3.4 Energy and e	lectric potential.		
Readings and oth	ner Readings to investigation of concepts, as well as to complement and strengthen the		
resources	topics discussed in class.		
Teaching method	Is Exercise class and homework, as well as them respective interpretation of results; digital		
	simulation exercises, different activities in digital platforms on the net.		
Learning activitie	s Develop of lab practices applying the theory concepts. Practices report, group and		
	individual problem resolution.		

Electrical res	stive circuits.	11 hours
Objective:	That the student understand the concepts: electrical current, electromotive force, resistance and resistivity, to the solution of electric circuits through application of Ohm's law and Kirchhoff's laws, in	
	addition to reducing series-parallel.	
4.1 Electrical ci		
4.2 Resistance	and resistivity.	
4.3 Ohm's law.		
4.4 Series circu	it, parallel circuit and series-parallel circuits.	
4.5 Energy and	power.	
4.6 Electromoti	ve force.	
4.7 Measuring	equipment: voltmeter, ammeter, ohmmeter and wattmeter.	
4.8 Kirchhoff's		
Readings and c	ther Readings to investigation of concepts, as well as to complement and strengthen	the topics
resources	discussed in class.	•
Teaching methor	bds Exercise class and homework, as well as them respective interpretation of results simulation exercises, different activities in digital platforms on the net.	s; digital
Learning activit	ies Develop of lab practices applying the theory concepts. Practices report, group an individual problem resolution.	ıd

5 Batteries.	4 hours		
Specific	That the student understand like the electric energy develops, starting of chemical reactions. Identify like		
Objective:	can storing energy; as well as the study different types of piles and batteries.		
5.1 Chemical e	5.1 Chemical energy and Electromotive force.		
5.2 Primaries a	5.2 Primaries and secondaries batteries.		
5.3 Different ty	5.3 Different types of batteries.		

Readings and other	Readings to investigation of concepts, as well as to complement and strengthen the topics
resources	discussed in class.
Teaching methods	Exercise class and homework, as well as them respective interpretation of results; digital
	simulation exercises, different activities in digital platforms on the net.
Learning activities Develop of lab practices applying the theory concepts. Practices report, group and	
	individual problem resolution.

6 Capacitance	and Capacitors 4 hours	s
Specific Objective:	That the student understands the characteristics of the capacitors, the concept of capacitance, influence of dielectric in capacitors; as well as ways to connect different and its application to simple F C circuits in direct current.	२-
6.3 Capacitors6.4 Series and6.5 RC circuits	nd parameters of a capacitor. with dielectrics. parallel capacitors	
Readings and or resources	ther Readings to investigation of concepts, as well as to complement and strengthen the topics discussed in class.	
Teaching meth	ods Exercise class and homework, as well as them respective interpretation of results; digita simulation exercises, different activities in digital platforms on the net.	3I
Learning activi	ies Develop of lab practices applying the theory concepts. Practices report, group and individual problem resolution.	

7 Magnetic field	6hours
Specific T	hat the student understand the basic concepts of magnetism: magnetic field induction lines, magnetic
Objective: fl	ux.
7.1 Magnetic fiel	J.
	perties of matter.
7.3 Induction line	es and magnetic flow.
7.4 Force on a m	iovil charge.
7.5 Force on a c	onductor.
7.6 Momentum c	n a turn with current
Readings and ot	
resources	topics discussed in class.
Teaching method	
	simulation exercises, different activities in digital platforms on the net.
Learning activitie	
	individual problem resolution.

8 Ampere's law		6
		Hours
Specific	That the student analyze the interactions between electrical currents and magnetic fields, using	the
Objective:	concepts of Ampere's law and the solenoid study.	
8.1 Ampere's	aw.	
8.2 Field of straight conductor.		
8.3 Electrodynamic force between parallel conductors.		
8.4 Magnetic f		

Readings and other resources	Readings to investigation of concepts, as well as to complement and strengthen the topics discussed in class.
Teaching methods	Exercise class and homework, as well as them respective interpretation of results; digital simulation exercises, different activities in digital platforms on the net
Learning activities	Develop of lab practices applying the theory concepts. Practices report, group and individual problem resolution.

9. Induced electromotive force. Faraday's Law. 11h				
	s			
Objective: m	That the student understand the behavior of electrical current conductors and the presence of variables magnetic fields; identify the concepts of current and electromotive force induced using the analysis of Faraday's law and Lenz's law.			
9.2 Principle of g	w and Lenz's law. generator. le of generating voltages and AC.			
9.4 Ideal transfor				
Readings and other resources Readings to investigation of concepts, as well as to complement and strengther topics discussed in class.)		
Teaching methods Exercise class and homework, as well as them respective interpretation of res simulation exercises, different activities in digital platforms on the net		ligital		
Learning activitie	es Develop of lab practices applying the theory concepts. Practices report, group and individual problem resolution.			

10 Inductance. 5hours				
Specific	That the student apply the inductance concept, like circuits element to solve simple circuits LR, LC,			
Objective:	RLC.			
10.1 Definition a	and calculatin	g.		
10.2 RL and LC series circuits.				
10.3 Definition of RLC circuits.				
Readings and other Readings to investigation of concepts, as well as to com		Readings to investigation of concepts, as well as to complement and strengthen the		
resources topics discussed in class.		topics discussed in class.		
Teaching methods Exercise class and homework, as well as them respective interpretation of result		Exercise class and homework, as well as them respective interpretation of results; digital		
	simulation exercises, different activities in digital platforms on the net			
Learning activities		Develop of lab practices applying the theory concepts. Practices report, group and		
		individual problem resolution.		

E) TEACHING AND LEARNING METHODOLOGIES

Each topic will expose using the traditional method, audiovisual and demonstrative. A series of exercises will be solved. Also the students will solve problems and elaboration of a project. The students will perform 10 lab practices, 1 hour each week.

The teacher, with support of lab assistant will perform the presentation of the practice and taking care that the students develop the practice in correct form.

F) EVALUATION CRITERIA

Evaluation:	Schedule	Suggested Form of Evaluation and weighing	Topics
First partial evaluation	Session 16	Exam 80% , Homeworks 5%, Practices 15%	1,2,3

Universidad Autónoma de San Luis Potosí College of Engineering Mechanical and Electrical Department Analytical Program

Second partial evaluation	Session 32	Exam 80% , Homeworks 5%, Practices 15%	3, 4, 5
Third partial evaluation	Session 48	Exam 80% , Homeworks 5%, Practices 15%	5, 6 , 7
Fourth partial evaluation	Session 64	Exam 80% , Homeworks 5%, Practices 15%	8, 9, 10
Ordinary final evaluation		80% (Average partial evaluations) 20% Final project	
Another activity:	Final project: percentage and criteria defined by the teacher at the beginning of the semester	At each partial will perform lab practices that will be cosidered in the evaluation	
Extraordinary exam	Week 17 of the semester	100% Written exam	100% agenda
Title exam	According to scheduling school secretary	100% Written exam	100% agenda
Regularization exam	According to scheduling school secretary	100% Written exam	100% agenda

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main Books

- SERWAY, JEWETT, Física: electricidad y magnetismo, CengageLearning, Séptima Edición, 2009.
- BOYLESTAD, ROBERT L, Introducción al Análisis de Circuitos, decimo segunda edición, 2011
- TIPLER PAUL A., Física para la ciencia y la tecnología, Volumen II, Reverté, sexta edición, 2009.

Complementary Books

• SEARS-ZEMANSKY-YOUNG, Física universitaria, Volumen II, Pearson, decimo segunda edición, 2009.

Internet Links

- <u>http://www.learnengineering.org</u>
- <u>http://www.ni.com/multisim/whatis/esa/</u>
- •

Software:

Multisim