

80 Theory

A) COURSE

5

Course Id:	Course			
5693	Electrotechnology for engineering II			
Class Hours per Week	Lab hours per week	Complementary practices	Credits	Total hour course

5

10

B) GENERAL COURSE INFORMATION

0

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:		VI	VI		
Course Type		Required	Required		
(Required/Elective)					
Prerequisite		Electrotechnology	Electrotechnology		
Course:		for engineering I	for engineering I		
CACEI		CI	CI		
Classification:					

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of:

Understand in its entirety the generation process, transmission, distribution and utilization of the electrical energy; as well as its handling in the industry; Beginning by the theoretical concepts of AC, and finishing by its application in the industry corresponding mostly to electrical motors and its control.

D) TOPICS (CONTENTS AND METHODOLOGY)

2.- Measurments and security

1 AC circuits.	18hours	5
Specific	That the student apply the principles of the AC circuits and he could interpret the relative phenomenon	
Objective:	and to its application.	
1.1 Middle valu	lue and RMS value.	
1.2 Complex n	numbers.	
1.3 Complex in	mpedance and phasor notation	
1.4 Series and	d parallel circuits.	
1.5 Resonance	e. Power and fp.	
1.6 Polyphase	e systems	
Readings and	other Readings to investigation of concepts, as well as to complement and strengthen the topics	
resources	discussed in class.	
Teaching meth	hods Exercise class and homework, as well as them respective interpretation of results; digital	
	simulation exercises, different activities in digital platforms on the net.	
Learning activi	vities Develop of lab practices applying the theory concepts. Practices report, group and	
_	individual problem resolution.	

4 hours	
---------	--

Universidad Autónoma de San Luis Potosí College of Engineering Mechanical and Electrical Department Analytical Program

	dent college the more sense of with here's generative considering the grade of the		
Specific I hat the stu	ident realizes the measurements with basic parameters, considering the needs security		
Objective: measures.			
2.1 Security, danger voltage	s, current tolerable to the human body.		
2.2 Analog and digital system	ms.		
2.3 Current and voltage mea	asurement.		
2.4 Resistance measuremer	nt and insulation resistance.		
2.5 Current and voltage tyra	nsformers.		
2.6 Power measurement, er	nergy and fp.		
Readings and other	Readings to investigation of concepts, as well as to complement and strengthen the topics		
resources	discussed in class.		
Teaching methods Exercise class and homework, as well as them respective interpretation of results; digita			
_	simulation exercises, different activities in digital platforms on the net.		
Learning activities	Develop of lab practices applying the theory concepts. Practices report, group and		
individual problem resolution.			
3 Generation, transmission	and distribution of electrical energy 10hours		
Specific That the stud	dent analyze the generation, transport, distribution and use of electrical energy.		
Objective:			
3.1 General scheme of an e	lectric circuit.		
3.2 Methods of generation (hydro-electrical, thermal-electrical, combined cycle, geothermal, wind).			
3.3 Generators, excitation, speed-frequency control.			
3.4 Transmission lines, voltages, conductors, insulators, structures.			
3.5 Substations, component	s. types.		
3.6 Sub-Transmission lines	and sub-distribution.		
3.7 Industrial distribution			
Readings and other	Readings to investigation of concepts as well as to complement and strengthen the topics		

Readings and other	readings to investigation of concepts, as well as to complement and strengthen the topics
resources	discussed in class.
Teaching methods	Exercise class and homework, as well as them respective interpretation of results; digital
	simulation exercises, different activities in digital platforms on the net.
Learning activities	Develop of lab practices applying the theory concepts. Practices report, group and
_	individual problem resolution.

4 Transformers.	8hours				
Specific That the	ne student identifies the different types of transformers, operation, connection types and				
Objective: applica	tion.				
4.1 Types and constru-	ction, norms.				
4.2 Ideal transformer a	nd real transformer.				
4.3 Equivalent circuit a	nd phase diagram.				
4.4 Transformer in sho	rt circuit and open circuit				
4.5 Losses, efficiency a	4.5 Losses, efficiency and voltage regulation.				
4.6 Three-phase transformers and its connections.					
4.7 Application of the t	ansformers, parallel connection, derivations changes, overload capacity.				
Readings and other	Readings to investigation of concepts, as well as to complement and strengthen the topics				
resources	discussed in class.				
Teaching methods Exercise class and homework, as well as them respective interpretation of results; digital					
	simulation exercises, different activities in digital platforms on the net.				
Learning activities	Develop of lab practices applying the theory concepts. Practices report, group and				
	individual problem resolution.				

5 Induction en	gines.	20hours
Specific	That the student identify the different types of design in the induction engines, application,	, operation
Objective:	characteristics; boot methods, control and protection.	

- 5.1 Magnetic rotating field and development of the torque.
- 5.2 Parameters of the induction engines
- 5.3 Design types of the squirrel cage engine and its application.
- 5.4 Wound rotor motors.
- 5.5 Starters and speed control of induction motors.

5.6 Monophasic engines, different types and its application.

· · · · · · · · · · · · · · · · · · ·	
Readings and other	Readings to investigation of concepts, as well as to complement and strengthen the topics
resources	discussed in class.
Teaching methods	Exercise class and homework, as well as them respective interpretation of results; digital
_	simulation exercises, different activities in digital platforms on the net.
Learning activities	Develop of lab practices applying the theory concepts. Practices report, group and
	individual problem resolution.

6 Synchronous	machines. 9hours
Specific	That the student distinguish the construction of synchronous machines, its operation and application.
Objective:	
6.1 Generalitie	s of synchronous machines.
6.2 Synchrono	us alternator
6.3 Synchrono	us motor and its control
Readings and	other Readings to investigation of concepts, as well as to complement and strengthen the topics
resources	discussed in class.
Teaching meth	ods Exercise class and homework, as well as them respective interpretation of results; digital
	simulation exercises, different activities in digital platforms on the net.
Learning activi	ties Develop of lab practices applying the theory concepts. Practices report, group and
	individual problem resolution.

7 DC machine	S		11hours
Specific	The student will describe the construction of DC motors, understanding why they work, know their speeds		
Objective:	and connect	ions, select your boot methods, security and applications.	
7.1 Generalitie	es.		
7.2 DC genera	itors.		
7.3 Transfored	tifiers.		
7.4 DC motors	and their cor	itrol	
Readings and	other	Readings to investigation of concepts, as well as to complement and strengthen t	he topics
resources		discussed in class.	
Teaching meth	nods	Exercise class and homework, as well as them respective interpretation of results	; digital
		simulation exercises, different activities in digital platforms on the net.	
Learning activ	ities	Develop of lab practices applying the theory concepts. Practices report, group and	b
		individual problem resolution.	

E) TEACHING AND LEARNING METHODOLOGIES

Presentation of topics, analysis of theoretical concepts, resolution and discussion of self-assessment questionnaires, group and individual work and supporting Electrical Circuits and Electrical Machines labs.

F) EVALUATION CRITERIA

Evaluation: Schedule	Suggested Form of Evaluation and weighing	Topics to cover
----------------------	--	-----------------

Universidad Autónoma de San Luis Potosí College of Engineering Mechanical and Electrical Department Analytical Program

First partial evaluation	Session 16	Exam 80% , Homeworks 5%, Practices 15%	1,2,3
Second partial evaluation	Session 32	Exam 80% , Homeworks 5%, Practices 15%	3, 4, 5
Third partial evaluation	Session 48	Exam 80% , Homeworks 5%, Practices 15%	5, 6 , 7
Fourth partial evaluation	Session 64	Exam 80% , Homeworks 5%, Practices 15%	8, 9, 10
Fifth partial evaluation	Session 80	Exam 80% , Homeworks 5%, Practices 15%	8, 9, 10
Ordinary final evaluation		80% (Average partial evaluations) 20% Final project	
Another activity:	Final project: percentage and criteria defined by the teacher at the beginning of the semester	At each partial will perform lab practices that will be cosidered in the evaluation	
Extraordinary exam	Week 17 of the semester	100% Written exam	100% agenda
Title exam	According to scheduling school secretary	100% Written exam	100% agenda
Regularization exam	According to scheduling school secretary	100% Written exam	100% agenda

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main Books

RICHARDSON, CAISSE, Máquinas Eléctricas Rotativas y Transformadores. Prentice Hall. 1997

ENRIQUEZ HARPER, Máquinas Eléctricas, Limusa, 2005. IRVING L KOSOW, Electric Machinery and Transformer. Prentice Hall 2005.

S. J, CHAPMAN, Máquinas Eléctricas. Mc. Graw Hill.2012.

Complementary Books

• P. C. SEN, Principles of Electric Machines and Power Electronics. John Wiley & Son. 2014

Internet Links

• <u>http://www.learnengineering.org</u>