

16 hrs. lab. 96 hrs. total

A) COURSE

Course Id:	Course				
5695	Mechanic of Materials I				
			-		
Class Hours per Week	Lab hours per week Complementary Credits Total hour				
	practices course				
		practices		course	

B) GENERAL COURSE INFORMATION:

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:	III	III	IV	IV	III
Course Type (Required/Elective)	Elective	Elective	Elective	Elective	Elective
Prerequisite Course:	Statics (5694)	Statics (5694)	Statics (5694)	Statics (5694) and Materials for Engineering (5699)	Statics (5694)
CACEI Classification:	CI	CI	CI	CI	CI

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of:

Understand the concepts and develop methods of discipline, to determine the efforts and deformations arising in structural members or components of the machine; and based on the acquired knowledge, establish the fundamentals for inferring causes of failure that will be studied in the course of Mechanics of Materials I.

D) TOPICS (CONTENTS AND METHODOLOGY)

1 Introduction	n 7 hours		
Specific	Objective 1: That student to know and understand the relationship between the forces applied to an		
Objective:	element and the efforts and deformations that occur.		
1.1 Force, stre	ss and deformation.		
1.2 Stress defi	nition.		
1.3 Stress clas	sification		
1.3.1 Intern	al stresses: normal and shear.		
1.3.2 Supe	1.3.2 Superficial stresses.		
1.4 Deformation	1.4 Deformation definition.		
1.5 Strain Med	hanical Essay.		
1.5.1 Stres	1.5.1 Stress deformation graph. Characteristic values.		
1.5.2 Hook	1.5.2 Hooke Law.		
1.5.3 Elast	1.5.3 Elastic – plastic behaviour of the material.		
	a for dimensioning of elements: design factor, admissible stress, admissible deformation.		

Readings and other resources	 HIBBELER, RUSSELL C.Mecánica de Materiales, Sexta edición. PEARSON, México D.F., 2006. GERE-TIMOSHENKO.Mecánica de Materiales.Ed. Iberoamericana, México D.F., 1986. BEER, JOHNSTON.Mecánica de Materiales. Cuarta Edición. Editorial McGraw Hill México, 2007.
Teaching methods	Inductive method: going from general to particular knowledge. Group based learning to cope with basic theoretical knowledge.
Learning activities	Lab practicing to apply concepts taught during class. It is mandatory to present task reports

2 Strain and co	ompression	normal stresses	10 hours		
Specific	Objective 2 : The student to understand and calculate the normal efforts of tension and compression in				
Objective:	various elements mainly bars, produced by mechanical loads and temperature variations.				
2.1 Strain and co	ompression ne	ormal stresses.			
2.2. How to dete	rmine stresse	es on statically equilibrated elements. Sections method of calculation.			
2.3 Strain and Co					
2.4 Thermical No	ormal Stresse	S.			
		ined stress calculation.			
Readings and o	other	HIBBELER, RUSSELL C.Mecánica de Materiales, Sexta edición. PEARSON, Méx	ico D.F.,		
resources		2006.			
		GERE-TIMOSHENKO.Mecánica de Materiales.Ed. Iberoamericana, México D.F.,	1986.		
		BEER, JOHNSTON.Mecánica de Materiales. Cuarta Edición. Editorial McGraw Hil	1		
		México, 2007.			
Teaching metho	ods	Inductive method: going from general to particular knowledge.			
•		Group based learning to cope with basic theoretical knowledge.			
Learning activit	ties	Lab practicing to apply concepts taught during class. It is mandatory to present ta	sk		
		reports			

3 Shear stres	3 Shear stresses: pure shear and torsion shear 15 hours			
Specific	c Objective 3: The student to understand and calculate shear, pure and torsion efforts, and to know the			
Objective:	importance of latter in mechanical elements.			
3.1 Shear loads).			
3.2 Where to fir	nd pure shear stresses.			
	oment. Application of torsional moment in Mechanical Engineering.			
3.4 Torsional m	oment equations.			
3.4.1 Torsional	l angular deformation.			
3.4.2 Torsional	shear stress.			
3.5 Relationship	b between torsional stress and deformation angle.			
3.6 Torsional st	resses in power transmission.			
3.7 Torsiona	al stresses in statically non determined elements.			
	· · · · · · · · · · · · · · · · · · ·			

Readings and other resources	 HIBBELER, RUSSELL C.Mecánica de Materiales, Sexta edición. PEARSON, México D.F., 2006. GERE-TIMOSHENKO.Mecánica de Materiales.Ed. Iberoamericana, México D.F., 1986. BEER, JOHNSTON.Mecánica de Materiales. Cuarta Edición. Editorial McGraw Hill México, 2007.
Teaching methods	Inductive method: going from general to particular knowledge. Group based learning to cope with basic theoretical knowledge.
Learning activities	Lab practicing to apply concepts taught during class. It is mandatory to present task reports

4 Strain flexur	e 15 ho				
Specific	Objective 4: The student to learn flexure as a product of mechanical loads, and the calculation of				
Objective:	efforts and deformations arising in consequence thereof.				
4.1 Model repres	entations.				
4.1.1 Beam d	finition. Different types of beams.				
4.1.2 Type of	oads that produce flexure on beams.				
4.1.3 Mechar	cal elements behaving as a beam.				
	nd flexure moment diagrams.				
4.3 Flexure prod					
	al stress. Flexure equation or formula.				
4.5 Area momer 4.6 Flexure	s of second order. Flexure resistant moments. Commercial profiles of steel and other materials. hear stress.				
Readings and o	ther HIBBELER, RUSSELL C.Mecánica de Materiales, Sexta edición. PEARSON, México D.I				
resources	2006.				
	GERE-TIMOSHENKO.Mecánica de Materiales.Ed. Iberoamericana, México D.F., 1986.				
	BEER, JOHNSTON. Mecánica de Materiales. Cuarta Edición. Editorial McGraw Hill				
	México, 2007.				
Teaching meth	ds Inductive method: going from general to particular knowledge.				
	Group based learning to cope with basic theoretical knowledge.				
Learning activi					
	reports				

5 Flexure defe	ormation on b	peams	15 hours		
Specific	Objective 5: The student to understand and calculate the deformations on a straight axle beam,				
Objective:	caused by a l	bending load.			
5.1. How to ded	uct deformatio	n. Elastic equation.			
5.2. Double inte	grative method	d.			
5.3. Area of	flexure mome	nt method.			
Readings and	other	HIBBELER, RUSSELL C.Mecánica de Materiales, Sexta edición. PEARSON, Méx	kico D.F.,		
resources		2006.			
	GERE-TIMOSHENKO.Mecánica de Materiales.Ed. Iberoamericana, México D.F., 1986.				
	BEER, JOHNSTON. Mecánica de Materiales. Cuarta Edición. Editorial McGraw Hill				
	México, 2007.				

Teaching methods	Inductive method: going from general to particular knowledge. Group based learning to cope with basic theoretical knowledge.
Learning activities	Lab practicing to apply concepts taught during class. It is mandatory to present task reports

6 Statically n	on determined beams 18 h	hour
Specific Objective:	Objective 6: The student to learn how to establish equations that allow to solve indeterminate beam	าร
6.1. Double inte	grative method	
6.2 Area of flexe	ure moment method	
	Theorem of deformation energy	
	on determined beams	
6.5 Continuous	beam.	
6.5.1 Three r	noment's equation.	
6.5.3 Shear f	rt reactions and resistive moments. force diagrams. exure by three moments equation.	
Readings and resources	other HIBBELER, RUSSELL C.Mecánica de Materiales, Sexta edición. PEARSON, México D 2006.).F.,
	GERE-TIMOSHENKO.Mecánica de Materiales.Ed. Iberoamericana, México D.F., 1986 BEER, JOHNSTON.Mecánica de Materiales. Cuarta Edición. Editorial McGraw Hill México, 2007.	
Teaching meth	Inductive method: going from general to particular knowledge. Group based learning to cope with basic theoretical knowledge.	
Learning activ	ities Lab practicing to apply concepts taught during class. It is mandatory to present task reports	

E) TEACHING AND LEARNING METHODOLOGIES

- a) Professor Lecture.
- b) Paper Readings.
- c) Use of software to prove mathematics modeling.
- d) Homework to investigate important matters.
- e) Case study strategy..

F) EVALUATION CRITERIA:

Evaluation:	Schedule	Suggested Form of Evaluation	Topics
		and weighing	
1er. Partial Evaluation	20 Session	25 % Ponderability	1 y 2
		Partial Evaluation:	
		Exam 80%, Extra work during	
		class hour 10%, Participating	
		in class hour 10%.	
2da. Partial Evaluation	40 Session	25 % Ponderability	3
		Partial Evaluation:	

Universidad Autónoma de San Luis Potosí Collegue of Engineering Mechanical and Electrical Department Analytical Program

		Exam 80%, Extra work during	
		class hour 10%, Participating	
		in class hour 10%.	
3er. Partial Evaluation	60 Session	25 % Ponderability	4 y 5
		Partial Evaluation:	
		Exam 80%, Extra work during	
		class hour 10%, Participating	
		in class hour 10%.	
4ta. Partial Evaluation	80 Session	25 % Ponderability	5 y 6
		Partial Evaluation:	
		Exam 80%, Extra work during	
		class hour 10%, Participating	
		in class hour 10%.	
Evaluación Final Ordinario		100% (Promedio de las	
		Evaluaciones Parciales)	
Extra Activity:	Mechanic of		
	Materials		
	Laboratory.		
	Specific activities		
	shown at the		
	correspondent lab		
	practicing manual.		
Ordinary Final Evaluation		Partial Evaluation Average	
Extraordinary Exam	17th week of the	100% Exam	100% Themes
	semester		

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

BASIC TEXT BOOK

HIBBELER, RUSSELL C. Mecánica de Materiales, Sexta edición. PEARSON, México D.F., 2006.

GERE-TIMOSHENKO.

Mecánica de Materiales. Ed. Iberoamericana, México D.F., 1986.

BEER, JOHNSTON. Mecánica de Materiales. Cuarta Edición. Editorial McGraw Hill, México, 2007.

GERE, GOODNO. Mecánica de Materiales. Ed. Cengage, México D.F., 2009.

PYTEL/SINGER. Resistencia de Materiales, Cuarta edición. Ed. Harla, México D.F., 1982.

Complementary

Craig, Roy R. Jr. Mecánica de Materiales, Segunda edición. CECSA, México, 2002.

RILEY/STURGES/MORRIS. Mecánica de Materiales. MDSolids V1.7 con problemas modelo. Timothy A. Philpot, Segunda edición.

Mechanics of Materials. Interactive Mechanics of Materials Tutorial. Beer, Johnston, Dewolf, Third edition. McGraw-Hill.

DUBBEL. HANDBOOK OF MECHANICAL ENGINEERING. Edited by W. Beitz & Küttner. Editorial Springer Verlag, London, 1994.

Internet Sites: Moodle Platform Sociedad Americana de Ingenieros Mecánicos: ASME https://www.asme.org

Data Bases: About materials properties. http://www.matweb.com

Fundamental knowledge on Mechanic Engineering materials, unit conversion factors, mechanical design, equations and formulae, fabricating processes, solid mechanics, fluids and mathematics. http://www.efunda.com/home.cfm

Simulators: Simulate Software: MD Solid Simulator