

A) COURSE

Course Id:	Course
5702	Circuits and Electric Motors

Class Hours per Week	Lab hours per week	Complementary practices	Credits	Total hour course
3	2	2	8	48

B) GENERAL COURSE INFORMATION:

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:					V
Course Type					Required
(Required/Elective)					
Prerequisite					Electrical
Course:					Circuits A
					(5517)
CACEI					CI
Classification:					

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of: Apply the principles of operation of single phase and three phase circuits AC, the single phase transformers and of electrical motors DC, the induction motors, the single phase motors, the stepper motors, and the servomotors, in the selection of motors for specific applications.

D) TOPICS (CONTENTS AND METHODOLOGY)

1. ANALYSIS OF SINGLE PH	HASE POWER IN AC 8 H	lours
Specific The student	t will understand the concepts of instantaneous power, average, reactive, appare	nt
1.1 Single phase power.		
1.1.1 Average and ef	ffective values of a sinusoidal.	
1.1.2 Instantaneous	power and average power.	
1.2 Complex power.		
1.2.1 Representation	of the complex power.	
1.2.2 The power trian	gle.	
1.2.3 Theorem of max	ximum power transfer.	
1.3 Power factor and corr	rection of the power factor	
Readings and other	To read the topics of the bibliography is recommended	
resources	To solve problems suggested by the teacher.	
Teaching Methodologies	Collaborative Learning	
	Problem-based learning	

Learning Activities	Projects
	To solve problems in the class.
	Homework
	Mandatory to make practices in the Lab

2 THREE PHAS	SE CIRCUIT	S	9 Hours
Specific	The student	t will analyze and apply the concepts related with three phase circuits: the ph	asor
Objective:	representat	ion, solution methods, transformations and power calculations in balanced	
	conditions.		
2.1 Balanced	d three phase	e systems.	
2.1.1 Intro	oduction to th	ne three phase systems	
2.1.2 Y-co	onnection.		
2.1.3 -co	nnection.		
2.1.4 Trar	nsformations	: Y- , Y	
2.2 The pow	er triangle ar	nd power factor in systems.	
Readings and o	other	To read the topics of the bibliography is recommended	
resources		To solve problems suggested by the teacher.	
Teaching Metho	odologies	Collaborative Learning	
		Problem-based learning	
Learning Activit	ties	Projects	
		To solve problems in the class.	
		Homework	
		Mandatory to make practices in the Lab	

3. TRANSFORM	MERS	4 Hour
Specific	The student	t will know the principle of operation of transformers and ranking.
Objective:		
3.1 Analysis	s of the single	phase transformer.
3.1.1 T	urns ratio of t	he transformer.
3.1.2 E	Oot Conventio	n.
3.2 Types a	nd construction	on of transformers.
Readings and	other	
resources		
Teaching Meth	odologies	Presentation of topics by the teacher.
		Using multimedia resources presenting operating temperature measurement
		instruments
		Presentation of application examples to the sensors seen in this topic
Learning Activ	ities	Investigation of applications using this type of sensor
		Exercises interpretation of data sheets for these instruments
		Practices for identification and use of instruments for temperature

4. PRINCIPLES	S OF ELEC	TRICAL MACHINES	3 Hours
Specific	The student	t will know the basic principles of conversion of electromagnetic energy	
Objective:			
4.1 A simple	loop in a uni	iform magnetic field	
4.1.1 The	e voltage ind	uced in a simple rotating loop	
4.1.2 The	e torque indu	iced in a current carrying loop.	
Readings and o	other	To read the topics of the bibliography is recommended	
resources		To solve problems suggested by the teacher	
Teaching Metho	odologies	Collaborative Learning	
		Problem-based learning	

Learning Activities	Projects
	To solve problems in the class.
	Homework
	Mandatory to make practices in the Lab

5. DC MOTORS	81	Hours
Specific	The student will learn the principle of operation of DC motors, the types of motors, torque-	
Objective:	speed characteristics and applications, and apply in problems of selection of motors.	
5.1 Introducti	on to DC motors.	
5.2 The equiv	valent circuit of a DC motor	
5.3 The mag	netization curve of a DC machine.	
5.5 Separate	ly excited and shunt DC motors.	
5.5 The serie	s DC motor.	
5.6 The perm	anent magnet DC motor.	
Readings and o	ther To read the topics of the bibliography is recommended	
resources	To solve problems suggested by the teacher	
Teaching Metho	dologies Collaborative Learning	
	Problem-based learning	
Learning Activit	ies Projects	
	To solve problems in the class.	
	Homework	
	Mandatory to make practices in the Lab	

6. INDUCTION	MOTORS	8 H	lours
Specific	The student	t will know the different types of induction motors, application, and operation	
Objective:	features, he	e will understand the practical problems of start, protection and control, and he w	ill
	learn the mo	ethods for solving these problems.	
6.1 Magnetic	c field rotation	n and the development of induced torque.	
6.2 Torque-s	speed curve of	of the induction motors.	
6.3 Types of	f design of the	e cage motor and his application.	
6.4 Starting	induction mo	tors, speed control and protection in induction motors.	
Readings and c	other	To read the topics of the bibliography is recommended	
resources		To solve problems suggested by the teacher.	
Teaching Metho	odologies	Collaborative Learning	
Problem-based learning			
Learning Activi	ties	Projects	
		To solve problems in the class.	
		Homework	
		Mandatory to make practices in the Lab	

7. STEPPER M	OTORS, SERVOMOTORS, UNIVERSAL MOTOR AND SINGLE	8 Hours
Specific	The student will understand the basic principles of operation of stepper motors and	
Objective:	servomotors and of the universal motors and single phase induction, and he will apply the	hese
	principles in the selection of motors for specific applications.	

7.1 Brushless motor			
7.2 Stepper motor.			
7.2.1 Principles of operation.			
7.2.2 Selection.			
7.3 Servomotors.			
7.3.1 Principles of operation.			
7.3.2 Selection.			
7.4 Universal motor.			
7.5 Single phase motor.			
Readings and other	To read the topics of the bibliography is recommended		
resources	To solve problems suggested by the teacher.		
Teaching Methodologies	Collaborative Learning		
	Problem-based learning		
Learning Activities	Projects		
	To solve problems in the class.		
	Homework		
	Mandatory to make practices in the Lab		

E) TEACHING AND LEARNING METHODOLOGIES

Presentation by the teacher with the support of audiovisual material. Analysis theoretical concepts. Problem-based learning related to motor selection. Laboratory practices.

F) EVALUATION CRITERIA:

Evaluation:	Schedule	Suggested Form of Evaluation and weighing	Topics
1st Term	Session 16	Exam 85%, Homework 15%,	Units 1 and 2
2nd Term	Session 32	Exam 85%, Homework 15%,	Units 3, 4 and 5
3rd Term	Session 48	Exam 85%, Homework 15%,	Units 6 and 7
Final evaluation		100% (Average of the partial evaluations)	
Other activity:			
Extraordinary Exam	According to schedule	100% Exam	100% of topics
Title Exam	According to schedule	100% Exam	100% of topics
Regularization Exam	According to schedule	100% Exam	100% of topics

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main Books

a) ROBERT L. BOYLESTAD, Introducción al análisis de circuitos, 12ª Ed., Pearson Educación de México,

2010.

- b) S. J, CHAPMAN, 5ª Ed., Máquinas Eléctricas, McGraw Hill, 2011.
- c) W. BOLTON, Mecatrónica, 5a Ed., Alfaomega, 2013

Complementary Books

- a) JOSEPH A. EDMINISTER, Circuitos Eléctricos, Mc Graw Hill Schaum. 1970.
- b) RICHARD C. DORF, JAMES A. SVOBODA, Circuitos Eléctricos, 9ª Edición, Alfaomega, 2013.
- c) WILLIAM H. HAYT, Jr., JACK E. KEMMERLY, STEVEN M. DURBIN, Análisis de Circuitos en Ingeniería, 8a.
- d) Edición, Mc Graw-Hill, 2011.
- e) P. C. SEN, Principles of Electric Machines and Power Electronics, 3a Ed., John Wiley & Sons, 2013.
- f) ENRIQUEZ HARPER, Máquinas Eléctricas, Limusa, 2005.
- g) IRVING L KOSOW, Electric Machinery and Transformer, Prentice Hall, 1972
- h) S. GRAY, Máquinas Eléctricas y Sistemas Accionadores, Alfaomega, 2000.
- i) ANDRZEJ M. PAWLAK, Sensors and Actuators in Mechatronics, Design and Applications, CRC Press Taylor
- j) & Francis Group, 2007.
- k) DAVID G. ALCIATORE AND MICHAEL B. HISTAND, Introduction to Mechatronics and Measurement Systems, fourth edition, McGraw Hill, 2011.

Internet Links