

A) COURSE

Course Id:	Course
5703	Modeling and Simulation of Systems

Class Hours per Week	Lab hours per week	Complementary practices	Credits	Total hour course
3	1	3	7	48

B) GENERAL COURSE INFORMATION:

EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)	EE (IEA)
Level:				VI	V
Course Type (Required/Elective)				Required	Required
Prerequisite Course:				Applied Mathematics	Electric Circuits A and Dynamic
CACEI Classification:				CI	CI

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of:

Model mechanical, electrical, thermal, fluid, and electromechanical systems. Students will also be able to establish the dynamic model of a system by using engineering tools. Additionally, students will know simulation tools to allow them to consider the important elements to perform a correct simulation as well as an adequate interpretation of it.

D) TOPICS (CONTENTS AND METHODOLOGY)

1 Introduction		6 Hours
Specific	Specific Students will know the importance of modeling and simulation as well as main elements to a correct	
Objective:	simulation.	
1.1 Basic Definit	ions	
1.1.1 Systen		
1.1.2 Experir	nent	
1.1.3 Model		
1.1.4 Simula	tion	
1.2 Importance	of Modeling	
1.3 Importance	of Simulation	
1.4 Types of Ma	athematical Models	
1.5 Integrating I	Nethods	
1.6 Simulation v	vith different integrating steps	
1.7 Numerical S	tability	
1.8 Simulation S	Software (Matlab, QtOctave and SciLab)	

Readings and other resources	[10, chapters 1 y 6]
Teaching Methodologies	Topics are presented by traditional and audiovisual lectures. Sometimes, professor exposes a problem, gets an analytical solution and program the reached equations in a simulation software (Matlab, QtOctave, SciLab). Other times, professor sets a problem, alumni develop an analytical answer, once this answer is feasible, professor presents a proposed solution. Finally, alumni simulate results in Matlab, QtOctave, SciLab. During de course, some sessions will take place using computers where teacher will guide alumni to simulate dynamic models previously developed. Computing sessions will not exceed 10% of total sessions.
Learning Activities	Teacher will continuously set homework involving solutions to engineering problems using computers. These solutions should contain analytical analysis and computer simulation considering integrating methods, integration step, and any other elements involved in the simulation. Professor feedback of solutions' alumni is required.

2 Basic foundations		9 Hours
Specific Students wil Objective:	I know basic elements required to model systems.	
2.1 Coordinate Systems		
2.2 Generalized Coordinates		
2.3 Work and Kinetic Energy		
2.4 Virtual Offsets		
2.5 Virtual Work Principle		
2.6 D'Alambert Principle		
2.7 Inputs and Outputs of a S	System	
	1	
Readings and other	See [2]-[6].	
resources		
leaching Methodologies	I opics are presented by traditional and audiovisual lectures. Sometimes, profes	ssor exposes
	a problem, gets an analytical solution and program the reached equations in	a simulation
	software (Matlab, QtOctave, SciLab). Other times, professor sets a problem, all	umni develop
	an analytical answer, once this answer is feasible, professor presents a propo	sed solution.
	Finally, alumni simulate results in Matlab, QtOctave, SciLab.	
	During de course, some sessions will take place using computers where teach	ner will guide
	alumni to simulate dynamic models previously developed. Computing sess	ions will not
	exceed 30% of total sessions.	
Learning	Teacher will continuously set homework involving solutions to engineering pro	blems using
Activities	computers. These solutions should contain analytical analysis and computer	er simulation
	considering integrating methods, integration step, and any other elements in	volved in the
	simulation. Professor feedback of solutions' alumni is required.	

3 Basic princip	oles of electric	al system modeling	5 Hours
Specific	Students will	I model electrical systems.	
Objective:			
3.1 Kirchhoff La	WS		
3.2 RLC Circuit	s with single i	nput/output (SISO)	
3.3 RLC Circuits	s with multiple i	nputs/outputs (MIMO)	
3.4 Operational	Amplifier (OpA	ymp)	
3.4.1 The lo	deal Operation	al Amplifier	
3.4.2 Settin	gs of OpAmp		
3.4.3 Syste	ms with OpAn	np	
3.5 Electrical Sy	ystems Simula	ation	
Readings and	other	[1]-[2], [7] y [9]	
resources	<u> </u>		
Teaching Meth	odologies	Topics are presented by traditional and audiovisual lectures. Sometimes, profess	sor exposes a
		problem, gets an analytical solution and program the reached equations in a simula	ation software
(Matlab, QtOctave, SciLab). Other times, professor sets a problem, alumni develop a		o an analytical	
		answer, once this answer is feasible, professor presents a proposed solution. F	inally, alumni
		simulate results in Matlab, QtOctave, SciLab.	
		During de course, some sessions will take place using computers where teac	her will guide
		alumni to simulate dynamic models previously developed. Computing sessions w	vill not exceed
		30% of total sessions.	
Learning		Teacher will continuously set homework involving solutions to engineering pr	oblems using
Activities		computers. These solutions should contain analytical analysis and comput	er simulation
		considering integrating methods, integration step, and any other elements in	volved in the
		simulation. Professor feedback of solutions' alumni is required.	
L		1 · ·	

4 Basic princip	les of mecha	nical system modeling	5 Hours
Specific	Students wil	I model mechanical systems.	-
Objective:			
4.1 Newton Law	S		
4.2 Rotational M	4.2 Rotational Mechanical Systems: Case SISO and MIMO		
4.3 Translationa	al Mechanical	Systems: Case SISO and MIMO	
4.3 Inverted Per	ndulum		
4.4 Mechanical	Systems Sim	ulation	
Readings and	other	[1]-[2], [7] v [9]	
resources			
Teaching Meth	odologies	Topics are presented by traditional and audiovisual lectures. Sometimes, profess problem, gets an analytical solution and program the reached equations in software (Matlab, QtOctave, SciLab). Other times, professor sets a problem, alu an analytical answer, once this answer is feasible, professor presents a propo Finally, alumni simulate results in Matlab, QtOctave, SciLab. During de course, some sessions will take place using computers where teach alumni to simulate dynamic models previously developed. Computing sessions wi 30% of total sessions.	or exposes a a simulation umni develop sed solution. her will guide ill not exceed
Learning Activities		Teacher will continuously set homework involving solutions to engineering pro- computers. These solutions should contain analytical analysis and computer considering integrating methods, integration step, and any other elements invi- simulation. Professor feedback of solutions' alumni is required.	blems using or simulation olved in the

5 - Basic princip	les of electro	mechanical systems modeling	3 Hours
Specific	Students will	model electromechanical systems.	
Objective:		·	
5.1 Basic Princip	5.1 Basic Principles of DC Motors		
5.2 Permanent N	Magnet DC Mo	tors DO Mala	
5.3 Torque-Spee	ed Curves of a	DU MOTOF n Amplifiar/DC Matar System	
5.5 Electromech	anical System	s Simulation	
Readings and	other	[1]_[2] [7] v [9]	
resources			
Teaching Meth	odologies	Topics are presented by traditional and audiovisual lectures. Sometimes, profess	or exposes a
		problem, gets an analytical solution and program the reached equations in	a simulation
		software (Matlab, QtOctave, SciLab). Other times, professor sets a problem, alu	ımni develop
		an analytical answer, once this answer is feasible, professor presents a propo-	sed solution.
		Finally, alumni simulate results in Matlab, QtOctave, SciLab.	
		During de course, some sessions will take place using computers where teach	er will guide
		alumni to simulate dynamic models previously developed. Computing sessions wi	Il not exceed
<u> </u>		30% of total sessions.	
Learning		leacher will continuously set homework involving solutions to engineering pro	blems using
Activities		computers. These solutions should contain analytical analysis and computer	r simulation
		considering integrating methods, integration step, and any other elements inv	olved in the
		simulation. Protessor feedback of solutions' alumni is required.	
6 Basic princip	les of fluid an	d thermal system modeling	5 Hours
Specific	Students will	model hydraulic and thermal systems.	
Objective:			
6.1 Liquid Level	l System		
6.2 Pneumatic	Systems		
6.3 Hydraulic S	ystems		
6.5 Fluid and Th	sterns hermal Syster	ns Simulation	
Readings and	other		
resources		[1]-[2], [7] y [9].	
Teaching Meth	odologies	Topics are presented by traditional and audiovisual lectures. Sometimes, profess	or exposes a
		problem, gets an analytical solution and program the reached equations in	a simulation
		software (Matlab, QtOctave, SciLab). Other times, professor sets a problem, alu	ımni develop
		an analytical answer, once this answer is feasible, professor presents a proposition	sed solution.
		Finally, alumni simulate results in Matlab, QtOctave, SciLab.	
		During de course, some sessions will take place using computers where teach	ier will guide
		alumni to simulate dynamic models previously developed. Computing sessions wi	II not exceed
		30% of total sessions.	

 Learning
 Teacher will continuously set homework involving solutions to engineering problems using computers. These solutions should contain analytical analysis and computer simulation considering integrating methods, integration step, and any other elements involved in the simulation. Professor feedback of solutions' alumni is required.

7 Euler-Lagrange modeling	7 Euler-Lagrange modeling of mechanical systems 8 Hours		
Specific Students W	ill model mechanical systems.		
Objective:			
7.1 The Lagrangian			
7.2 Hamilton's Principle			
7.3 Energy Functions for Tra	nslational Mechanical Elements		
7.4 Energy Functions for Rot	tational Mechanical Elements		
7.5 Lagrangian Equation for	Conservative Mechanical Systems		
7.6 Euler's Dynamics Equation	ons		
7.7 Euler's Dynamic Equatio	ns for a Two-Link Planar Robot Arm		
Readings and other	[2]-[6]		
resources			
Teaching Methodologies	Topics are presented by traditional and audiovisual lectures. Sometimes, profess	or exposes a	
	problem, gets an analytical solution and program the reached equations in	a simulation	
software (Matlab, QtOctave, SciLab). Other times, professor sets a problem, alumni devel		umni develop	
an analytical answer, once this answer is feasible, professor presents a proposed solut		sed solution.	
	Finally, alumni simulate results in Matlab, QtOctave, SciLab.		
	During de course, some sessions will take place using computers where teacher	will guide	
	alumni to simulate dynamic models previously developed. Computing sessions w	ill not exceed	
	30% of total sessions		
Learning	Teacher will continuously set homework involving solutions to engineering pro	hlems using	
Activities	computers. These solutions should contain analytical analysis and computer	ar simulation	
	considering integrating methods integration stop, and any other elements in	volved in the	
	considering megrating methods, integration step, and any other elements into		
	simulation. Protessor reedback of solutions' alumni is required.		

8 Euler-Lagrar	nge Modeling	of Electrical Systems	7 Hours
Specific Objective:	Students will	I model electrical systems.	
8.1 Expressions 8.2 Establishme 8.3 Euler's Dyna 8.4 Analogy of I	s of Lagrange' ent of General amic Equatior Mechanical ar	's Equations for Electrical Circuits lized Forces ns for Electrical Systems nd Electrical Systems	
Readings and resources	d other [2]-[6]		
Teaching Meth	nodologies	Topics are presented by traditional and audiovisual lectures. Sometimes, profess problem, gets an analytical solution and program the reached equations in a simu software (Matlab, QtOctave, SciLab). Other times, professor sets a problem, alum an analytical answer, once this answer is feasible, professor presents a proposed Finally, alumni simulate results in Matlab, QtOctave, SciLab. During de course, some sessions will take place using computers where teacher alumni to simulate dynamic models previously developed. Computing sessions w 30% of total sessions.	or exposes a ulation nni develop d solution. will guide ill not exceed

Learning	Teacher will continuously set homework involving solutions to engineering problems using
Activities	computers. These solutions should contain analytical analysis and computer simulation
	considering integrating methods, integration step, and any other elements involved in the
	simulation. Professor feedback of solutions' alumni is required.

E) TEACHING AND LEARNING METHODOLOGIES

- a) Traditional exposition of each topic by the professor, using materials such as blackboard.
- b) Reading of scientific and divulgation articles.
- c) Research work by the students.
- d) Exposition of projects by the student.
- e) Use of updated software.

F) EVALUATION CRITERIA:

Elaboration and/or presentation of:		Schedule	Topics	Weighting
1 st . Term				
Exam:	90%	Session 16		
Homework:	10%		Units I y II	30%
Total:	100%	At the end of unit		
		Ш		
2 nd . Term				
Exam:	90%	Session 32	Units III-VI	40%
Homework:	10%			
Total:	100%	At the end of unit		
3 rd . Term				
Exam:	90%	Session 48	UnitsVII and	30%
Homework:	10%		VIII	
Total:	100%	At the end of unit		
		IV		
Total				
				100 %
Extraordinary Exam		According to schedule	100% Exam	100% Of topics
Title Exam		According to	100% Exam	100% Of topics
		schedule		
Regularization Exam		According to schedule	100% Exam	100% Of topics

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main Books:

- 1. Ogata, K. "Ingeniería de Control Moderna". 5a Edición. McGraw-Hill. 2010.
- 2. Ogata, K. "Dinámica de Sistemas". Prentice-Hall. 1987.
- 3. Fernández Rañada, A., "Dinámica Clásica", Alianza Editorial, 1994.
- 4. Wells, D.A. "Lagrangian Dynamics", 2a Edición, McGraw-Hill. 1967.
- 5. Hamill, P. "A Student's Guide to Lagrangians and Hamiltonians", Cambridge University Press, 2014.
- 6. Strauch D."Classical Mechanics: An Introduction", Springer, 2009.
- 7. Kuo B.C. "Sistemas de Control Automático", 7a Edición, Prentice-Hall, 1996
- 8. Dorf R. C., Bishop R. H. "Sistemas de control moderno", 10a Edición, Pearson Educación, 2005
- 9. Palm III W. J. "System Dynamics", 3a Edición, McGraw-Hill Science/Engineering/Math, 2013.
- 10. Won Y. Yang, Wenwu Cao, Tae S. Chung, John Morris, Applied numerical methods using MATLAB, Wiley-Interscience, 2005