

A) COURSE

Course Id:	Course			
5704	Computer Integrated Manufacturing			
		-	-	
Class Hours per Week	Lab hours per week	Complementary	Credits	Total hour
		practices		course
3	2	3	8	48

B) GENERAL COURSE INFORMATION:

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:	Х				
Course Type	Elective				
(Required/Elective)					
Prerequisite	Robotics A (5719)				
Course:					
CACEI	IA				
Classification:					

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of:

To apply concepts and techniques of manufacturing and control in the process of design, selection, implementation, evaluation and operation of a Computer Integrated Manufacturing System, justifying the result as a way to improve processes and increase the competitiveness of the manufacturing industry

D) TOPICS (CONTENTS AND METHODOLOGY)

1. Introduction	1. Introduction to manufacturing Hours				
Specific	Identify the activities and basic components of a manufacturing system, defining the				
Objective:	requirements to planning and control of it.				
1.1 Basic de	1.1 Basic definitions of manufacturing systems				
	turing environments				
1.3 Classific	1.3 Classification of Automated Manufacturing Systems				
1.4 Basic ele	1.4 Basic elements of an automated system				
1.5 Systems of a CIM environment					
1.6. Control	1.6. Control of a manufacturing system				
Readings and o	ther				
resources					
Teaching Metho	dologies Presentation of topics by the teacher.				
	Illustration of manufacturing environments with example cases.				
Learning Activit	ies				

2. Industrial robotics	Hours				
Specific Identify typ	es and basic components of industrial robots. Make an appropriate selection				
	process based on the needs of a specific application. Additionally they should exercise				
	programming languages for robots and know how to evaluate the advantages and				
	lisadvantages of each languages. Finally efficient programs must be designed for movement of				
	a robotic manipulator.				
2.1 Main concepts of					
	ponents of an industrial robot.				
2.3 Classification of in					
	methodology for industrial robots				
•	onomic justification for the use of industrial robots.				
2.6 . Robots programm					
2.7 - Precision and repeatability in Industrial robotics					
Readings and other	its recomended to read articles about new robotics applications in manufacturing				
resources	industry				
Teaching Methodologies	Exposition by the teacher				
	Using audiovisual tools showing the different configurations of robots and				
	applications				
	Solving exercises about robot programation				
Learning Activities	Homework with robot programming exercises.				
	practices with cartesian and spherical robots				

Hours				
Identify different numerical control equipment used in industry as well as different programming				
languages thereof. The student will be able to calculate the requirements in the manufacture				
and to implement the travel and miscellaneous functions necessary to generate one piece.				
C Technology				
cal Control in Computer Integrated				
g Systems.				
rol fundamentals.				
ng				
es Exposition by the teacher				
Using CAD and CAM tools for designing and programming parts				
Solving exercises robot programming				
Homework with CNC programming exercises.				
Turning and milling practices in integrated environments CNC (communication				
band conveyor-robot-CNC for loading and unloading.				

4. Group technol	ology and cellular Manufacturing Hou	irs			
Specific	The student will be able to define and understand the advantages and disadvantages of				
Objective:	Technology Groups, as well as economic benefits in the areas of design, manufacturing and administration. In addition, the student will apply the methods of classification and codification of families of parts.				
4.1 Introdu					
4.2 Part Fa					
4.3 Parts Classification and Coding.					
4.4 Production Flow Analysis					
4.5 Cellula	4.5 Cellular Manufacturing				
4.6 Quanti	4.6 Quantitative Analysis in Cellular Manufacturing				

Universidad Autónoma de San Luis Potosí Collegue of Engineering Mechanical and Electrical Department Analytical Program

Readings and other resources	Lectures of methods of classification and coding parts
Teaching Methodologies	Exposition by the teacher
	Presentation of cases to show benefits of cellphone manufacturing
	Solving exercises about group technology and cellphone manufacturing
Learning Activities	Homeworks about manufacturing cell formation

5. Manufacturing pla	anning and control Hours				
	The student will be able to apply analytical methods to optimize the resources of manpower,				
Objective: eq	equipment and space in a manufacturing system.				
5.1 Manufactur	ring environment				
5.2 Procedures	s for the planning of manufacturing systems.				
5.3 Batch sizin					
5.4 Multiprodu					
5.5. Flow-shop					
5.6. Job-shop	scheduling				
Readings and othe	er Reading articles about techniques for planning production lines				
resources					
Teaching Methodo	blogies Exposition by the teacher				
	Presentation of cases to show advantages and disadvantages of scheduling				
	techniques of production lines, and that each case should be used.				
	Solving exercises on scheduling techniques				
Learning Activities	s Exercises tasks scheduling techniques				
	Development practices on planning and control of production lines				

6. Quality contro	l for manufac	cturing Systems	Hours			
Specific	Students will learn the most used techniques in manufacturing industry to check the quality of					
Objective:	products manufactured in a production line. He also understand the principles of inspection					
	and techniques used for automated inspection. Finally, students will use the information					
	learned in this topic to evaluate between alternatives which suits the integration of Integrated					
	Manufactur	ing System.				
6.1 Quality	in Design ar	nd Manufacturing				
6.2 Inspecti	on Fundame	entals				
6.3 Samplin	ig vs. 100%	Inspection				
6.4 Automa	ted Inspection	on				
6.5 Inspecti	on technolo	gies				
Readings and other						
resources						
Teaching Meth	odologies	Exposition by the teacher				
-	-	Case presentations and audiovisual resources applications to display vis	sion			
		techniques for quality control				
Learning Activi	ties	Development of practices using vision systems				

7. Flexible manufacturing systems				
Specific	Understand and identify the major components of a Flexible Manufacturing System, and know			
Objective:	and apply techniques to plan and implement such systems.			
7.1 What is a Flexible Manufacturing System?				
7.2 FMS Components				
7.3 FMS Planning and Implementation Issues				
Readings and	other			
resources				

Teaching Methodologies	Exposition by the teacher
	Solving exercises on analysis of efficiency of production lines
Learning Activities	Exercises tasks with efficiency analysis of production lines

8. Programmab	8. Programmable Logic Controllers Hours				
Specific	Know the d	Know the different types of programmable logic controllers and understand their use. Create			
Objective:	ladder diagi	ladder diagrams for the control system and program a logic controller to achieve a sequence of			
	operations.				
8.1 Introdu	ction to Prog	rammable Logic Controllers			
	ontrol eleme				
8.3 Logic c	ontrollers are	chitecture			
8.4 PLC Pro	8.4 PLC Programming				
Readings and	Readings and other				
resources					
Teaching Meth	odologies	Exposition by the teacher			
		Resolution PLC programming exercises for workstations and production I	ines		
		Using simulation software to understand PLC's logic.			
Learning Activ	rities	Tasks with PLC programming exercises			

E) TEACHING AND LEARNING METHODOLOGIES

Presentation of course topics by the teacher including real case examples. Tasks and bibliographic research regarding the main topics and readings support will be assigned to the students. This course considers 45 instruction hours plus three hours for the application of tests.

F) EVALUATION CRITERIA:

Evaluation:	Schedule	Suggested Form of Evaluation and weighing	Topics
1st Term	Session 16	Exam 85%, Homework 15%,	Units 1 and 2
2nd Term	Session 32	Exam 85%, Homework 15%,	Units 2 and 3
3rd Term	Session 48	Exam 85%, Homework 15%,	Units 3 and 4
Final evaluation		100% (Average of the partial evaluations)	
Other activity:			
Exam, Extraordinary	According to schedule	100% Exam	100% of topics
Exam, Title sufficiency	According to schedule	100% Exam	100% of topics
Exam, regularization	According to schedule	100% Exam	100% of topics

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main Books

 AUTOMATION, PRODUCTION SYSTEMS, AND COMPUTER-AIDED MANUFACTURING, (3rd Edition) Groover, M. P.
Prentice-Hall, 2008

Complementary Books

- a) COMPUTER-INTEGRATED DESIGN AND MANUFACTURING Bedworth, David D.; Mark R.; Philip H. McGraw-Hill 1991
- b) COMPUTER CONTROL OF MANUFACTURING SYSTEMS Koran, Yorarn McGraw-Hill, 1983
- c) FLEXIBLE MANUFACTURING SYSTEM HANDBOOK Automation and Management Systems Division Noyes Publications. Park Ridge, N.Y. 1994
- d) PRINCIPLES OF OPERATION MANAGEMENT (8th Edition) Heizer, J.; Render, B.
 Prentice-Hall 2010

Internet Links