

1) PROGRAMA ANALÍTICO

A) Análisis Numérico

B) DATOS BÁSICOS DEL CURSO

Tipo de	Nueva creación			Reestructuración			Ajuste		Х	
propuesta curricular:										
Tipo de materia:	Obligatoria	X	Opta	ıtiva		Compleme	ntaria		Otra	
Materia	() No									
compartida con	(X) Sí									
otro PE o	¿Con qué PE se comparte? IEA, IM, IMA, IME, IMT									
entidad	¿De qué semestre? VII, V, IV, VI									
académica	¿De qué entidad académica? <u>Facultad de Ingeniería</u>									
Prerrequisito	Introducción a la programación (IEA, IM, IMA e IME), Programación I (IMT)									
Elaborado por:	César Francisco Fernando Méndez Barrios, Ericka Reyes Sánchez, Gilberto Mejía									
	Rodríguez.									
Revisado por:	Academia de Matemáticas									
Programas analíticos										
Semestre	Horas de teoi	ría	Ho	oras de p	ráctica	•	oras trab	•		Créditos
	por semana	ì		sen	nana	е	studiante	e por se	mana	
VII, V, IV, IV, VI	3			(0			3		6

C) OBJETIVOS DEL CURSO

Objetivo general	Al finalizar el curso el estudiante logrará: Analizar y aplicar herramientas del análisis matemático para la solución numérica de diversos problemas que surgen en ingeniería; identificar si un método es aplicable a una solución en específico y determinar si la metodología propuesta conducirá a un algoritmo que converja a la solución en cuestión a través del desarrollo de algoritmos computacionales.		
Objetivos	Unidades	Objetivos específicos	
específicos	1. Introducción.	Calcular los diferentes tipos de errores, para poder identificar si un método se ha aproximado a su correcta solución.	
	2. Solución de Ecuaciones de Una Variable	Analizar y aplicar los métodos más comunes para la solución de ecuaciones de una variable, con el fin de resolver problemas que surjan en ingeniería.	
	3. Soluciones de Sistemas de Ecuaciones Lineales	Analizar e implementar distintos métodos numéricos para la solución de sistemas de ecuaciones lineales que surgen en campo de la ingeniería.	
	4. Ajuste de Curvas	Distinguir y aplicar los métodos para el ajuste de curvas según sea el caso, con el fin de representar el comportamiento de procesos experimentales.	

5. Inte Numér	rica obtene	nar y aplicar los métodos para el ajuste de datos, a fin de r un polinomio que ayuda a calcular valores intermedios o estos son pocos o están incompletos.
6. Deri Integra Numéi	ación integra rica decisio numéri	nar los procedimientos numéricos para la derivación e ción de funciones y ampliar su criterio para la toma de unes en cuanto a la aplicación de los métodos analíticos o cos. Analizar la precisión del método numérico y determinar la ón del paso de discretización a fin de establecer cotas sobre r.
Ecuac Diferer	iones numéri	nar y aplicar los métodos más comunes para la solución ca de ecuaciones diferenciales ordinarias; estudiar los s de estabilidad numérica.

D) CONTENIDOS Y MÉTODOS POR UNIDADES Y TEMAS

Unidad 1 Introducción	2 horas
1.1 Error absoluto y relativo	
1.2 Cifras significativas	
Unidad 2. Solución de ecuaciones de una variable	7 horas
2.1. Método de bisección	
2.2. Regla falsa	
2.3. Método de Newton-Raphson	
2.4. Método de Newton-Raphson Modificado	
Unidad 3. Soluciones de Sistemas de Ecuaciones Lineales	8 horas
3.1. Factorización de matrices	
3.1.1 Factorización LU (Método de Crout)	
3.1.2 Factorización LDL [⊤]	
3.1.3 Factorización de Cholesky	
3.2. Métodos matriciales básicos	
3.2.1 Método de Gauss	
3.2.2 Método de Gauss-Jordan	
3.3. Métodos iterativos	
3.3.1 Normas de vectores y matrices	
3.3.2 Convergencia de matrices y sucesiones convergentes de vectores	
3.3.2 Criterios de convergencia	
3.3.3 Método de Jacobi	
3.3.4 Método de Gauss-Seidel	
Unidad 4. Ajuste de Curvas.	6 horas
4.1. Método de mínimos cuadrados	
4.1.1. Recta	
4.1.2. Parábola	
4.2. Regresión Polinomial	
Unidad 5. Interpolación Numérica	8 horas
5.1. Interpolación de Lagrange	
5.2. Interpolación de Newton	
5.3. Interpolación cúbica segmentaria	

Unidad 6. Derivación e	Integración Numérica	10 horas			
6.1. Derivación numérica					
	6.1.1 Formula de (n+1)-puntos				
6.1.2 Formula de	6.1.2 Formula de 3-puntos				
6.1.3 Formula de	6.1.3 Formula de 5-puntos				
6.1.4 Derivada Do	oble Numérica				
6.2. Integración numéric	a				
6.2.1 Regla del T	rapecio				
6.2.2 Regla del S	impson				
6.2.3 Regla del S	impson3/8				
6.2.4 Integración	Compuesta				
6.3.1 Integración	dobles con límites				
numéricos					
6.3.2 Integración	6.3.2 Integración dobles con límites				
funcionales	•				
Unidad 7 Solución de I	Ecuaciones Diferenciales Ordinarias (EDO)	7 horas			
	j				
7.3. Métodos numéricos para el problema de valor inicial (PVI) de EDO escalares					
	7.3.1. Euler				
	7.3.2. Taylor				
7.3.3. Runge-Kutta (2° y 4° orden)					
7.4. Métodos numéricos para el PVI de sistemas de EDO					
7.5. Métodos de numéricos para el problema de valores en la frontera					
7.5.1. Método de disparo lineal					
7.5.2. Método de disparo no lineal					
7.5.3. Método de diferencias finitas					
Lecturas y otros Métodos Numéricos Para Ingenieros					
recursos Steven C. Chapra /Raymond P. Canale					
Mc. Graw Hill Interamericana Editores S.A de C.V					
Cuarta edición, 2003.					
Métodos o técnicas de	Resolución de problemas en clase.				
enseñanza					
Actividades de Lecturas, tareas, ejercicios en clases.					
aprendizaje					

E) ESTRATEGIAS DE ENSEÑANZA Y APRENDIZAJE

Los temas se presentan con exposiciones tradicionales y audiovisuales. En unas sesiones el profesor presenta los métodos, desarrolla el algoritmo, e implementa el algoritmo en lenguaje Matlab o equivalente (GNU Octave, Scilab, etc.)

F) EVALUACIÓN Y ACREDITACIÓN

Evaluaciones y	actividades por parcial		Periodicidad	Abarca	Ponderación de cada parcial con relación al ordinario
Primer parcial	Examen teórico escrito:	80%	Sesión 17	Unidad 1 a 3	30%
	Tareas:	20%			
	Total:	100%			
Segundo parcial	Examen teórico escrito:	80%	Sesión 12	Unidad 4 y 5	40%
	Tareas:	20%			
	Total:	100%			
Tercer parcial	Examen teórico escrito:	80%	Sesión 19	Unidad 6 y 7	30%
	Problemas, tareas y trabajos:	20%			
	Total:	100%			
TOTAL					100%

Examen ordinario	Promedio de las cinco evaluaciones parciales: 100%
Otras actividades	
académicas requeridas	
Examen extraordinario	Examen teórico escrito con contenidos de las tres evaluaciones parciales 100%
Examen a título	Examen teórico escrito con contenidos de las siete unidades 100%
Examen de	Examen teórico escrito con contenidos de las siete unidades 100%
regularización	

G) BIBLIOGRAFÍA Y RECURSOS INFORMÁTICOS

Textos básicos

Métodos Numéricos para Ingenieros Steven C. Chapra / Raymond P. Canales Editorial Mc. Graw Hill Interamericana Editores S.A. de C. V. Séptima Edición, 2015.

Applied Numerical Methods Using MATLAB Won Y. Yang Editorial New Age International Publishers Second Edition, 2020.

Análsis Numérico Richard L. Burden, Faires J. Douglas. Editorial Thompson International Séptima Edición, 2023

Applied Numerical Methods for Engineers and Scientists Singiresu S. Rao Prentice-Hall

Primera Edición, 2002.

Textos complementarios

Numerical Methods for Engineers and Scientists Joe D. Hoffman CRC Press Second Edition, 2001.

Applied numerical methods for engineers using MATLAB and C. Robert J. Schilling, Sandra L. Harris Pacific Grove, CA: Books/Cole, Ed.2000

Applied Numerical Analysis Gerald Curtis F. Wheatley Patrick O. Editorial Pearson Educación Seventh Edition 2004.

Software:

Lenguaje Matlab o equivalente (GNU Octave, Scilab, etc.)