

A) COURSE

Course Id:	Course
5717	INDUSTRIAL ELECTRONICS A

Class Hours per Week	Lab hours per week	k Complementary Credits		Total hour
		practices		course
3	2	3	8	48

B) GENERAL COURSE INFORMATION:

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:				VIII	VI
Course Type (Required/Elective)				Elective	Required
Prerequisite Course:				Electronics II	Electronics II
CACEI Classification:				AI	AI

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of:

One of the major applications of power electronics is currently in the management and control of electrical energy industrial electrical systems, whose purpose is the efficient control of electrical energy. Therefore it is essential that undergraduate courses involving the handling of electrical-electronic and/or machines electrical have an introductory course on industrial electronics.

D) TOPICS (CONTENTS AND METHODOLOGY)

1 INTRODUCT	ION	8	B Hours
Specific	The student	t analyzes the characteristics of the main power electronic devices, develop va	rious
Objective:	topologies v	with these devices and identify their applications in industrial processes.	
1.1 Develop	ment and app	plication of the electronic in power circuits.	
1.2 Classific	ation of the p	ower converters.	
1.3 Electroni	cs switches.		
1.3.1 Di	odes.		
1.3.2 Tr	ansistors.		
1.3.3 Th	1.3.3 Thyristors.		
1.4 Selection	n of devices s	switches of solid state.	
1.5 Thermic	design.		
Readings and c	other	To read the topics of the bibliography is recommended	
resources		To solve problems suggested by the teacher.	
Teaching Metho	odologies	Collaborative Learning	
		Problem-based learning	

Learning Activities	Projects
	PSpice and Simulink simulations
	Study cases
	Homeworks
	Mandatory to make practices in the Lab

2. RECTIFIER	CIRCUITS		8 Hours	
Specific	To analyze t	To analyze the process of conversion of alternating current to direct current, identifying the		
Objective:	electronic e	electronic elements that are used.		
2.1 Non-con	2.1 Non-controlled rectifiers single phase and polyphase.			
2.2 Controlle	ed rectifiers si	ingle-phase and polyphase.		
2.3 Phase-c	ontrol.			
2.4 Thyristo	r firing circuits	3		
2.5 Thermic	design.			
Readings and	other	To read the topics of the bibliography is recommended		
resources	resources To solve problems suggested by the teacher			
Teaching Meth	Teaching Methodologies Collaborative Learning			
	Problem-based learning			
Learning Activ	ities	Projects		
		PSpice and Simulink simulations		
		Study cases		
		Homeworks		
		Mandatory to make practices in the Lab		

3. CD-CD CON	VERTERS		8 Hours
Specific	To analysis	To analysis the process of conversion of direct current to direct current identifying the	
Objective:	electronic e	lements that are used.	
3.1 The basic converter switching.			
3.2 The Buc	ck converter.		
3.3 The Boo	ost converter.		
3.4 The Buc	ck-Boost conv	erter.	
3.5 DC-DC	converter des	ign	
Readings and	Readings and other To read the topics of the bibliography is recommended		
resources	resources To solve problems suggested by the teacher.		
Teaching Methodologies Collaborati		Collaborative Learning	
Problem-based learning			
Learning Activ	ities	I Projects	
		PSpice and Simulink simulations	
		Study cases	
		Homeworks	
		Mandatory to make practices in the Lab	

4. INVERTERS		8 Hours
Specific	To identify the process of conversion of direct current to alternating current.	
Objective:		

- 4.1 The converter of rectangular wave.4.2 The converter of CD to AC with Pulse-Width Modulation.
- 4.3 The converter in voltage and constant frequency
- 4.4 The converter in voltage and variable frequency
- 4.5 The converter as universal generator.
- 4.6 Inverter design.

Readings and other	To read the topics of the bibliography is recommended
resources	To solve problems suggested by the teacher
Teaching Methodologies	Collaborative Learning
	Problem-based learning
Learning Activities	Projects
	PSpice and Simulink simulations
	Study cases
	Homeworks
	Mandatory to make practices in the Lab

5. ELECTRONI	C CONTROL	OF MOTORS OF DC	8 Hours	
Specific	To compare	To compare and select different electronic control schemes for motor direct current (DC),		
Objective:	according t	according to their characteristics		
5.1 Considera	tions of oper	ration of the DC motor in the four quadrants.		
5.2 Control of	a DC motor	through a converter DC-DC switching.		
5.3 Control for	stepper mo	tors.		
5.4 Control for	synchronou	is motors and DC motors brushless.		
	-			
Readings and	other	To read the topics of the bibliography is recommended		
resources	resources To solve problems suggested by the teacher.			
Teaching Meth	Teaching Methodologies Collaborative Learning			
	Problem-based learning			
Learning Activ	ities	Projects		
	PSpice and Simulink simulations			
	Study cases			
	Homeworks			
	Mandatory to make practices in the Lab			

6. ELECTRONI	C CONTROL	OF MOTORS OF AC	8 Hours
Specific	To identify d	lifferent models for electronic control of AC motors.	
Objective:			
6.1 Types of A	C controls.		
6.2 Characteri	stics of contr	ol of a asynchronous motor	
6.3 Torque cor	ntrol and spe	ed of a induction motor.	
6.4 Dynamic c	ontrol of the	induction motors.	
6.5 Application	6.5 Applications of the torque control and speed of induction motors.		
Readings and	other	To read the topics of the bibliography is recommended	
resources		To solve problems suggested by the teacher.	
Teaching Meth	eaching Methodologies Collaborative Learning		
	Problem-based learning		

Learning Activities	Projects
	PSpice and Simulink simulations
	Study cases
	Homeworks
	Mandatory to make practices in the Lab

E) TEACHING AND LEARNING METHODOLOGIES

Theoretical concepts are showed by exposures multimedia presentations. The student will research topics about the power electronics. The teacher will propose practical projects that involving the selection design and evaluation knowledge acquired in the course, to promote the participation of teams. The student will make a final project, which will aim integrate a motor control system to a mechatronic process, using the resources of the laboratory and/or the resources acquired by the student. The student will visit industries with a high degree of electronic control of processes. The student will use the laboratory computer in order to simulation exercises about of topics of the course.

F) EVALUATION CRITERIA:

Evaluation:	Schedule	Suggested Form of Evaluation and weighing	Topics
1st Term	Session 16	Exam 80%, Homework 20%,	Units 1 and 2
2nd Term	Session 32	Exam 80%, Homework 20%,	Units 3 and 4
3rd Term	Session 48	Exam 80%, Homework 20%,	Units 5 and 6
Final evaluation		100% (Average of the partial evaluations)	
Other activity:		,,,,,,,,	
Extraordinary Exam	According to schedule	100% Exam	100% of topics
Title Exam	According to schedule	100% Exam	100% of topics
Regularization Exam	According to schedule	100% Exam	100% of topics

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main Books

DANIEL W. HART, *Electrónica de Potencia*. PEARSON Prentice Hall, España 2001.

MUHAMMAD H. RASHID, Electrónica de Potencia. 3ª. Edición, PEARSON Prentice Hall, 2004.

Complementary Books

DANIEL W. HART, *Electrónica de Potencia*. PEARSON Prentice Hall, España 2001.

MUHAMMAD H. RASHID, Electrónica de Potencia. 3ª. Edición, PEARSON Prentice Hall, 2004.

FURTHER READING:

NED MOHAN, TORE M. UNDELAND, WILLIAM P. ROBBINS, *Electrónica de Potencia, Convertidores, aplicaciones y diseño*. Mc Graw Hill, México 2009.

P. C. SEN, Principles of Electric Machines and Power Electronics. Second Edition, John Wiley and Sons, 1997.

R. W. ERICKSON AND D. MAKSIMOVIC, *Fundamentals of Power Electronics*. Second Edition, Kluwer Academic Publishers, 2001.

PHILIP T. KREIN, *Elements of Power Electronics*. Oxford University Press, 1998.

Electronic pages:

http://www.ab.com/motion/ http://www.yaskawa.com/ http://www.baldor.com/ http://www.irf.com/indexsw.html