

A) COURSE

Course Id:	Course			
5719	Robotics A			
Class Hours per Week	Lab hours per week	Complementary	Credits	Total hour
		practices		course
4	2	4	10	64

B) GENERAL COURSE INFORMATION:

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:	Х				VII
Course Type	Floativo				Required
(Required/Elective)	Elective				
Prerequisite Course:	Control Engineering II				225 Credits Approved
CACEI Classification:	IA				IA

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of:				
APPLY THE CONCEPTS OF KINEMATICS, DYNAMICS AND CONTROL OF ROBOT MANIPULATORS. IT WILL BE				
ABLE TO COMPUTE AND PROGRAMMING TRAJECTORIES TO OPERATE AN INDUSTRIAL ROBOT.				

D) TOPICS (CONTENTS AND METHODOLOGY)

UNIT 1: INTRODUCTION 4					
Specific THE STUDE	ENT WILL LEARN THE HISTORY OF ROBOTICS AND AN OVERVIEW	OF THE			
Objective: CONSTRUC	TION, MODELING AND CONTROL OF THE COMMON ROBOTS				
1.1 HISTORY OF ROBO	TICS				
1.2 DYNAMICS AND	CONTROL OF ROBOT MANIPULATORS.				
1.3 COMPONENTS AI	1.3 COMPONENTS AND STRUCTURE OF ROBOT MANIPULATORS				
Readings and other Robótica. John J. Craig. Pearson Education, 3a Ed. 2006. ISBN: 970-26-0772-8					
resources Fundamentos de Robótica. Antonio Barrientos, Luís Felipe Peñín, Carlos Balaguer y					
	Rafael Aracil. Mc Graw Hill				
Teaching Methodologies The subject will be taught in the traditional manner, with the teacher's explanation.					
	Coupled with homework.				
Learning Activities	Lectures, Homework, Exercises.				

UNIT 2: KINEMATICS MOD	ELING 12 Hrs
Specific UNDERST	ANDING THE CALCULATIONS FOR DETERMINING THE POSITION AND ORIENTATION
Objective: OF THE EN	ID EFFECTOR OF THE ROBOT ACCORDING TO THE STRUCTURE OF THE ROBOT.
2.1 GEOMETRIC DESC	RIPTION AND TRANSFORMATIONS
2.2 DIRECT KINEMATI	C MODEL OF ROBOT MANIPULATORS
2.3 INVERSE KINEMA	TIC MODEL OF ROBOT MANIPULATORS
Readings and other	Modeling and Control of Robot Manipulators. Lorenzo Sciavicco, Bruno Siciliano. McGraw
resources	Hill, 1996. ISBN: 0-07-057217-8
	Robótica. John J. Craig. Pearson Education, 3a Ed. 2006. ISBN: 970-26-0772-8
	Fundamentos de Robótica. Antonio Barrientos, Luis Felipe Peñín, Carlos Balaguer y
	Rafael Aracil. Mc Graw Hill
Teaching Methodologies	The subject will be taught in the traditional manner, with the teacher's explanation.
	Coupled with homework and researches.
Learning Activities	Lectures, Homework, Exercises.
-	

UNIT 3: MANIP	ULATOR JAC	OBIAN: VELOCITY AND FORCE 12 Hrs		
Specific	THE STUD	ENT MUST UNDERSTAND THE RELATIONSHIP BETWEEN THE VELOCITIES		
Objective:	AT JOINTS	AND LINEAR AND ANGULAR VELOCITIES OF THE END EFFECTOR		
	ELEMENT.	ALSO UNDERSTAND THE RELATIONSHIP BETWEEN THESE FORCES		
	AND THE 1	ORQUES ON THE MANIPULATOR.		
3.1 JACOBIAN				
3.2 KINEMATIO	SINGULARI	TIES		
3.3 DIFFEREN	TIAL KINEMA	TICS INVERSION		
3.4 STATIC FO	RCE IN THE	MANIPULATOR		
Readings and	Readings and other Modeling and Control of Robot Manipulators. Lorenzo Sciavicco, Bruno Siciliano. McGrav			
resources		Hill, 1996. ISBN: 0-07-057217-8		
	Robótica. John J. Craig. Pearson Education, 3a Ed. 2006. ISBN: 970-26-0772-8			
		Fundamentos de Robótica. A		
Teaching Meth	odologies	TOPICS EXPOSITION, ANALYSIS OF PRINCIPLES AND EXAMPLES,		
		DISCUSSION OF RESULTS OF NUMERICAL EXERCISES AND ASSIGNMENTS,		
		MIDTERMS, HOMEWORK AND LABS. DEVELOPMENT OF SIMULATIONS IN		
		SPECIALIZED SOFTWARE FOR ELECTRICAL AND ELECTRONIC CIRCUITS.		
Learning Activ	rities	Lectures, Homework, Exercises.		

UNIT 4: TRAJEC	JNIT 4: TRAJECTORY GENERATION 12 Hrs			
Specific	THAT THE STUDENT APPLIES THE METHODS FOR COMPUTING THE TRAJECTORY THA	١T		
Objective:	DESCRIBES THE DESIRED MOVEMENT OF THE MANIPULATOR IN THE CARTESIAN-SPAC	E		
-	AND JOINT-SPACE.			
4.1 GENER	AL CONSIDERATIONS IN PATH DESCRIPTION AND GENERATION			
4.2 JOINT-S	SPACE SCHEMES			
4.3 CARTES	SIAN-SPACE SCHEMES			
4.4 GEOME	TRIC PROBLEMS WITH CARTESIAN PATHS			
Readings and o	other Modeling and Control of Robot Manipulators. Lorenzo Sciavicco, Bruno Siciliano. McGra	w		
resources	Hill, 1996. ISBN: 0-07-057217-8			
	Robótica. John J. Craig. Pearson Education, 3a Ed. 2006. ISBN: 970-26-0772-8			
Fundamentos de Robótica. A				
Teaching Metho	odologies The subject will be taught in the traditional manner, with the teacher's explanation.			
Learning Activi	ities Lectures, Homework, Exercises.			

UNIT 5 MOTION	CONTROL 12 Hrs	
Specific TI	HAT THE STUDENT BE ABLE TO DESIGN BASIC CONTROL MOVEMENTS OF A ROBOT	
Objective: M	ANIPULATOR.	
5.1 THE CON	TROL PROBLEM	
5.1 JOINT SP	ACE CONTROL	
5.2 OPERATIO	ONAL SPACE CONTROL (CARTESIAN)	
Readings and oth	ner Modeling and Control of Robot Manipulators. Lorenzo Sciavicco, Bruno Siciliano. McGraw	
resources	Hill, 1996. ISBN: 0-07-057217-8	
Robótica. John J. Craig. Pearson Education, 3a Ed. 2006. ISBN: 970-26-0772-8		
	Fundamentos de Robótica. A	
Teaching Method	lologies The subject will be taught in the traditional manner, with the teacher's explanation.	
	Coupled with homework and researches.	
Learning Activitie	es Lectures, Homework, Exercises.	

UNIT 6: TRAJE	JNIT 6: TRAJECTORY CONTROL PROJECT IN INDUSTRTAL ROBOTS 12 Hr				
Specific	STUDENTS	MUST APPLY THE THEORETICAL KNOWLEDGE ACQUIRED DURING THE C	OURSE,		
Objective:	IN A SPECIE	FIC PROJECT: A REAL APPLICATION.			
6.1 PROJE	CT DEVELOF	PMENT.			
Readings and	Readings and other Modeling and Control of Robot Manipulators. Lorenzo Sciavicco, Bruno Siciliano. McG				
resources Hill, 1996. ISBN: 0-07-057217-8		Hill, 1996. ISBN: 0-07-057217-8			
Robótica. John J. Craig. Pearson Education, 3a Ed. 2006. ISBN: 970-26-0772-8					
Fundamentos de Robótica. A					
Teaching Methodologies		The subject will be taught in the traditional manner, with the teacher's expl	lanation.		
		Coupled with homework and researches.			
Learning Activ	ities	Lectures, Homework, Exercises.			

- E) TEACHING AND LEARNING METHODOLOGIES
 a) Topics Explanations.
 of) Reading scientific papers.
 c) Research by students.
 d) Learning oriented projects.
 c) Lear of aimulators.

- e) Use of simulators.

F) EVALUATION CRITERIA:

Evaluation:	Schedule	Suggested Form of Evaluation and weighing	Topics
1st Term	Session 16	Exam 85%, Homework 15%,	Units 1 and 2
2nd Term	Session 16	Exam 85%, Homework 15%,	Units 3, and 4
3rd Term	Session 16	Exam 85%, Homework 15%,	Units 4 and 5
4th Term	Session 16	Exam 85%, Homework 15%	Unit 6
Final evaluation		100% (Average of the partial evaluations)	
Other activity:			
Extraordinary Exam	According to schedule	100% Exam	100% of topics
Title Exam	According to schedule	100% Exam	100% of topics
Regularization Exam	According to schedule	100% Exam	100% of topics

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main Books

1. Modeling and Control of Robot Manipulators. Lorenzo Sciavicco, Bruno Siciliano. McGraw Hill, 1996. ISBN: 0-07-057217-8

2. Robótica. John J. Craig. Pearson Education, 3a Ed. 2006. ISBN: 970-26-0772-8

3. Fundamentos de Robótica. Antonio Barrientos, Luís Felipe Peñín, Carlos Balaguer y Rafael Aracil. Mc Graw Hill.