

A) COURSE

Course Id:	Course
5723	Robotics B

Class Hours per Week	Lab hours per week	Complementary practices	Credits	Total hour course
3	2	3	8	48

B) GENERAL COURSE INFORMATION:

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:					VIII
Course Type (Required/Elective)					elective
Prerequisite Course:					Robotics A (5719)
CACEI Classification:					IA

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of:

The student will acquire and apply knowledge of advanced robotics in an application project. On the theoretical side of the course, the student will acquire the knowledge in modeling and control of different types of robots to execute his application project. On the practical side (laboratory and Project), the student will acquire the knowledge and skills to program and operate such robots.

D) TOPICS (CONTENTS AND METHODOLOGY)

1 INTRODUCT	TION (ROBO	T TYPES, R4, R3, R5, R12)	2 Hours
Specific	The student	will have a general view of the architecture of different types of robots.	
Objective:			
1.1 Historical ba	ickground		
1.2 Types of rob	oots		
Readings and other Reading of reference R3, R5, R12 and R4. Also make available, according to the		ne teacher,	
resources addition		additional teaching materials through electronic means, for example through a	distance
		learning platform (Moodle or equivalent).	
Teaching Methodologies Subject exposition by means such as the blackboard and the multimedia projector		tor.	
Learning Activ	ities	Readings of the bibliography and practice of laboratory about robotics introduct	ion

2. INDUSTRIA	L ROBOTS (R1, R2, R5, R3)	8 Hours
Specific	The student will understand advanced models and control algorithms for industrial robots.	
Objective:		

2.1 Dynamic model for industrial robots		
2.2 Path planning using the d	lynamic model	
2.3 Advanced control algorith	ms	
Readings and other	Reading of reference R1, R2, R5 and R3. Also make available, according to the teacher,	
resources	additional teaching materials through electronic means, for example through a distance	
	learning platform (Moodle or equivalent).	
Teaching Methodologies	Subject exposition by means such as the blackboard and the multimedia projector.	
	Individual and team work will be used during the course. Simulations in CAD software and	
	programming will be carried out.	
Learning Activities	Readings of the bibliography, homework's, exercises in class and practice of laboratory	
-	about robotics	

3. PARALLEL ROBOTS (R5	, R6) 5 Hou	Irs
Specific The student	will understand the architecture of parallel robots and the kinematic model of Delta type	
Objective: robots		
3.1 Parallel robots, Delta-type	e parallel robot	
3.2 Kinematic model of Delta	-type parallel robots.	
3.3 Point-to-point control of a	Delta robot.	
Readings and other Reading of reference R5 and R3. Also make available, according to the teacher,		
resources	additional teaching materials through electronic means, for example through a distance	
	learning platform (Moodle or equivalent).	
Teaching Methodologies	Subject exposition by means such as the blackboard and the multimedia projector.	
	Individual and team work will be used during the course. Simulations in CAD software ar	۱d
	programming will be carried out.	
Learning Activities	Readings of the bibliography, homework's, exercises in class and practice of laboratory	
_	about robotics	

4. MOBILE ROBOTS (WHEELED MOBILE ROBOTS R4, R7	')
--	----

4. MOBILE ROBOTS (WHE	ELED MOBILE ROBOTS R4, R7)	8 Hours
Specific The studen	t will understand the architecture and kinematics of wheeled mobile.	
Objective:		
4.1 Non-holonomic restriction	ns	
4.2 Kinematic model of whe	eled mobile robots	
4.3 Path following without o	rientation control	
4.4 Point stabilization (parki	ng)	
Readings and other	Reading of reference R4 and R7. Also make available, according to the teacher,	
resources	additional teaching materials through electronic means, for example through a dis	tance
	learning platform (Moodle or equivalent).	
Teaching Methodologies	Subject exposition by means such as the blackboard and the multimedia projector	r.
	Individual and team work will be used during the course. Simulations in CAD softw	vare and
	programming will be carried out.	
Learning Activities	Readings of the bibliography, homework's, exercises in class and practice of labo	ratory
	about robotics	-

5. ROBOT VISI	ION (R8, R9, R10, R11) 9 Hou			
Specific	The student will comprehend the basics and application of computer vision for robotics.			
Objective:				
5.1 Camera Mo	odels			
5.2 Camera Cal	5.2 Camera Calibration			
5.3 Camera pose reconstruction from two images				
Readings and	other Reading of reference R8, R9, R10 and R11. Also make available, according to the			
resources	teacher, additional teaching materials through electronic means, for example through a			
	distance learning platform (Moodle or equivalent).			

Teaching Methodologies	Subject exposition by means such as the blackboard and the multimedia projector. Individual and team work will be used during the course. Simulations in CAD software and programming will be carried out.
Learning Activities	Readings of the bibliography, homework's, exercises in class and practice of laboratory about robotics

6. PROJECT		16 Ho	ours
Specific	The student	will apply the theoretical knowledge acquired during the course, in an application projec	t.
Objective:			
6.1 Development of the project.			
Readings and	Readings and other Lectura de las referencias bibliográficas del curso y de las adicionales que el profesor		
resources determine.			
Teaching Methodologies Conducción de deliberaciones, supervisión de proyecto.			
Learning Activ	ities	Carrying out the project and the activities required for this (eg: research on topics	
_		relevant, design of components, assemblies, testing, etc).	

E) TEACHING AND LEARNING METHODOLOGIES

Subject exposition by means such as the blackboard and the multimedia projector. Execution of a robotics application project. Individual and team work will be used during the course. Simulations in cad software and programming will be carried out.

F) EVALUATION CRITERIA:

Evaluation:	Schedule	Suggested Form of Evaluation and weighing	Topics
1st Term	Session 16	Exam 85%, Homework 15%,	Units 1 to 3
2nd Term	Session 32	Exam 85%, Homework 15%,	Units 4 and 5
Project	Session 48	100% project evaluation	Unit 6
Final evaluation		50% (Average of the partial evaluations) 50% project	
Other activity:		approved laboratory	
Extraordinary Exam	According to schedule	100% Exam	100% of topics
Title Exam	According to schedule	100% Exam	100% of topics
Regularization Exam	According to schedule	100% Exam	100% of topics

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main Books

R1. Modeling and Control of Robot Manipulators, Lorenzo Sciavicco, Bruno Siciliano McGraw Hill 1996 ISBN: 0-07-057217-8

R2. Robótica John J. Craig Pearson Education 3a Ed. 2006 ISBN: 970-26-0772-8

R3. Fundamentos de Robótica Antonio Barrientos, Luís Felipe Peñín, Carlos Balaguer y Rafael Aracil Mc Graw Hill 2a Ed. 2007 ISBN: 978-84-481-5636-7

R4. Robótica: Manipuladores y robots móviles Aníbal Ollero Baturone Ed. Alfaomega 2001 ISBN: 970-15-0758-4

R5. Robotics, Fundamental Concepts and Analysis Ashitava Ghosal Ed. Oxford 2006 ISBN-10: 0-19-567391-3

R6. M Lopez, E Castillo, G Garcıa, and A Bashir, Delta robot: inverse, direct, and intermediate Jacobians Proc. IMechE Vol. 220 Part C: J. Mechanical Engineering Science C20304 © IMechE 2006, pp103-109. ISBN-13: 9781846284045 ISBN-10: 184628404X

R7. Robot Motion and Control, recent developments Krysztof Kozlowski (de) Springer 2006 ISBN-13: 9781846284045 ISBN-10: 184628404X

R8. "Learning OpenCV", Gary Bradski and Adrian Kaehler. O'Reilly. 2008.

R9. "Robot Vision" Horn, B.K.P. Mc Graw Hill 1986.

Complementary Books

R10. "Robótica: control, detección, visión e inteligencia", Fu,K.S., Gonzalez,R.C., Lee C.S.C. Mc Graw Hill, México, 1988.

R11. Robótica Industrial

Mikell P. Groover, Mitchell Weiss, Roger N. Nagel y Nicholas G. Odrey McGRAW-HILL 1990 ISBN: 84-7615-302-3

R12. Practical and Experimental Robotics Ferat Sahin y Pushkin Kachroo CRC Press 2008 ISBN-13: 978-1-4200-5909-0

Internet Links