

A) COURSE

Course Id:	Course			
5726	Digital Signal Processing			
Class Hours per Week	Lab hours per week	Complementary	Credits	Total hour

Class Hours per week	Lab nouis per week	Complementary	oreans	Total noul
		practices		course
3	2	3	8	48

B) GENERAL COURSE INFORMATION:

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:	VIII				VIII
Course Type	Elective				Elective
(Required/Elective)					
Prerequisite	Digital Systems				Digital Systems
Course:	Design (5659) and				Design (5659)
	Electronics I (5591)				and Electronics
					I (5591)
CACEI	CI				CI
Classification:					

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of:	
Design FIR and IIR Digital filter using mathematics resources as the Discrete Fourier Transform and the Z Transform	

D) TOPICS (CONTENTS AND METHODOLOGY)

Signals and Dig	ital Processing	Hours
Specific	The student will understand the fundamentals of Digital Signal Processing	
Objective:		
1.1 Signal	characterization and classification.	
1.2 Basic	operations used on signal processing	
1.3 Basic	type of signals	
1.4 Signal	processing applications	
1.5 Why I	Digital Signal Processing?	
1.6 Discre	te time signals	
1.7 Comn	non sequences and representation	
1.8 Samp	ling process	
1.9 Aliasi	ng signals	

Readings and other resources	Sanjit K. Mitra, Digital Signal Processing. A computer- based approach, 3rd Edition, McGraw-Hill 2007 Acquisition data software
Teaching Methodologies	Theory exposition
	Exercises
	Computer simulation
Learning Activities	Problems resolution
	Homework
	Investigation work

Discrete time digital s	ignal processing Hours	
Specific This	chapter will show the student the basic concepts of discrete time digital signal processing	
Objective:		
2.1 Introduction	n to DSP	
2.2 Sampling of	continuous time signals	
2.3 Sampling of	Passband Signal	
2.4 Sample-and	I-Hold circuit	
2.5 Analog-to-D	Digital converter	
2.6 Digital-to-A	nalog converter	
2.7 Reconstruct	tion Filter Design	
2.8 Effect of Sa	mple-and-Hold operation	
Readings and other	Sanjit K. Mitra, Digital Signal Processing. A computer- based approach, 3rd Edition,	
resources	McGraw-Hill 2007	
	Acquisition data software	
Teaching Methodolog	gies Theory exposition	
	Exercises	
	Computer simulation	
Learning Activities	Problems resolution	
	Homework	
	Investigation work	

Analog Signal P	rocessing	Hours		
Specific	The student will apply the strategies for Analog Signal Conditioning and identify the	implied		
Objective:	problems			
3.1 Analo	signal conditioning			
3.2 Signal	conversion process			
3.3 Archit	3.3 Architecture and characteristics of systems for signal conditioning and processing			
3.4 Instrumentation amplification				
3.5 No lin	3.5 No linear analog conditioning			
3.6 Analog	g conditioning noise			
Readings and	other Sanjit K. Mitra, Digital Signal Processing. A computer-based approach, 3rd E	dition.		
resources	McGraw-Hill 2007			
	Acquisition data software			

Hours

Teaching Methodologies	Theory exposition
	Exercises
	Computer simulation
Learning Activities	Problems resolution
	Homework
	Investigation work

4. IIR and FIR filter design

Specific The students will learn the IIR and FIR design Objective:

- 4.1 Preliminary conditions of IIR filters
- 4.2 Design of Passband IIR filters
- 4.3 IIR spectral transformation
- 4.4 Preliminary conditions of FIR filters
- 4.5 FIR filter design based on windowed Fourier Series
- 4.6 FIR filter design of minimum phase
- 4.7 FIR filter design computationally efficient

Readings and other	Sanjit K. Mitra, Digital Signal Processing. A computer- based approach, 3rd Edition,
resources	McGraw-Hill 2007
	Acquisition data software
Teaching Methodologies	Theory exposition
	Exercises
	Computer simulation
Learning Activities	Problems resolution
	Homework
	Investigation work

5. Analysis of finite word	dlenght effects	Hours
Specific The st	udent will analyze the problems caused by the digital signal processing implementa	ation
Objective: and pr	opose possible solutions	
5.1 The quantiza	tion Process and Errors	
5.2 Quantization	of Fixed-Point Numbers	
5.3 Quantization	of Floating -point Numbers	
5.4 Analysis of C	Defficient Quantization Effects	
5.5 A/D Conversion	ion Noise analysis	
5.6 Analysis of A	rithmetic Round-Off Effects	
5.7 Dynamic Ran	ge Scaling	
5.8 Signal-to-Noi	se Ratio in Low-Order IIR Filters	
5.9 Low-Sensitiv	ity Digital Filters	
5.10 Reduction of	f Product round-Off Errors Using Error Feedback	
5.11 Limit cycles	in IIR Digital Filters	
5.12 Round-Off E	rrors in FFT Algorithms	
Readings and other	Sanjit K. Mitra, Digital Signal Processing. A computer- based approach, 3rd Edition	ı,
resources	McGraw-Hill 2007	
	Acquisition data software	

Teaching Methodologies	Theory exposition
	Exercises
	Computer simulation
Learning Activities	Problems resolution
	Homework
	Investigation work

E) TEACHING AND LEARNING METHODOLOGIES

a) Topics Explanations.

b) Problem solving.

c) Project oriented learning

F) EVALUATION CRITERIA:

Evaluation:	Schedule	Suggested Form of Evaluation and weighing	Topics
1st Term	Session 16	Exam 85%, Homework 15%,	Units 1 and 2
2nd Term	Session 32	Exam 85%, Homework 15%,	Units 2 and 3
3rd Term	Session 48	Exam 85%, Homework 15%,	Units 3 and 4
Final evaluation		100% (Average of the partial evaluations)	
Other activity:			
Extraordinary Exam	According to schedule	100% Exam	100% of topics
Title Exam	According to schedule	100% Exam	100% of topics
Regularization Exam	According to schedule	100% Exam	100% of topics

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main Books

Sanjit K. Mitra, Digital Signal Processing. A computer-based approach, 3rd Edition, McGraw-Hill 2007.

Complementary Books

- 1. Proakis, John G.; Manolakis, Dimitris G., Digital Signal Processing. Principles, algorithms and aplications. 3^a Ed. Pearson Prentice Hall 2006.
- 2. Proakis, John G.; Ingle, Vinary K. Digital Signal Processing. Using Matlb. PWS Publishing Company 2000.

Internet Links