

A) COURSE

Course Id:	Course								
5960	Applied Mathematics								
Class Hours nor Wook	Lab baura narwaak	Complementary	Credite	Total haur					

Class Hours per Week	Lab hours per week	Complementary	Credits	Total hour
		practices		course

B) GENERAL COURSE INFORMATION:

	EE (IEA)	ME (IM)	MME (IMA)	EME (IME)	MTE (IMT)
Level:		VI		III	IV
Course Type (Required/Elective)		Elective		Elective	Elective
Prerequisite Course:		Algebra B and Calculus D		Calculus D	Algebra B and Calculus D
CACEI Classification:		BS		BS	ES

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of:

Know and classify the signals and systems, as well as to identify its main characteristics and engineering applications. He will analyze and apply the theoretical fundaments of the Fourier Series and the theoretical basis of the Fourier Transform, Laplace Transform and Z Transform, their properties and limitations. The student will apply each of these transforms in the resolution of engineering problems.

D) TOPICS (CONTENTS AND METHODOLOGY)

1Signals and	Systems.	7 hours
Specific	The student will classify signals and systems, and identify their applications in engineering.	
Objective:		

- 1.1.1 Continuous and discrete signals.
- 1.1.2 Functions as signals.

1.1.3 Energy and Power of Signals.1.1.4 Periodic signals.

- 1.1.5 Odd and Even Signals.

1.2 Special Types of functions. 1.2.1.Generalised Functions

- 1.2.2 Exponential Complex Functions.
- 1.3 Systems and their properties.
- 1.3.1 Continuous and discrete systems.
- 1.3.2 Memory Systems.
- 1.3.3 Invertibility and Inverse Systems.1.3.4 Time-Invariant Systems.

135 Linear Systems

1.5.5 Linear Systems.	
Readings and other	It is recommended to read the topics suggested in the bibliography.
resources	Perform application exercises.
Teaching Methodologies	It will be taught by expository sessions by the teacher.
Learning Activities	Research work, exercises done in class and tasks from the students are intended to
	broaden and deepen the themes and topics of the course.

2. Fourier series and their p	properties.	12 hour
Specific The stude	nt will analyze and apply the Fourier Series and identify its importance in engineering.	
Objective:		
2.1 Fundamental Propertie	S.	
2.1.1 Periodic functions and	d their properties.	
2.1.2 Orthogonal Functions	а. Э.	
2.1.3 Basis of periodic func	tions.	
2.2 Fourier Series.		
2.3 Complex form of the Fo	purier series and Fourier Finite Series.	
2.4 Conditions of Dirichlet.		
2.5 The Parseval theorem.		
2.6 Properties of Fourier Se	eries.	
2.6.1 Differentiation of Four	rier Series.	
2.6.2 Fourier Series of Odd	I and Even functions.	
2.6.3 Half Wave Symmetry		
2.6.4 Quarter Wave Symm	etry.	
2.6.5 Hidden Symmetry.		
Readings and other	It is recommended to read the topics suggested in the bibliography.	
resources	Perform application exercises.	
Teaching Methodologies	It will be taught by expository sessions by the teacher.	
Learning Activities	Research work, exercises done in class and tasks from the students are intended	to
-	broaden and deepen the themes and topics of the course.	

3. Fourier and L	aplace Transform.	18 hours
Specific	The student will develop and obtain the Fourier Transform and Laplace for continuous signals,	, as well as
Objective:	utilizing their properties in solving problems in engineering.	

3.1 Fourier Transform.							
3.1.1 Complex frequency spe	ctrums.						
3.1.2 Meaning and Deduction of the Fourier Transform.							
3.1.3 Properties of the Fourie	r Transform.						
3.1.3.1 Linearity.							
3.1.3.2 Similarity Theorem or	Escalation.						
3.1.3.3 Translating time and f	requency.						
3.1.3.4 Transform the Derivat	ive.						
3.2 Laplace Transform.							
3.2.1 Definition and sufficient	conditions for existence.						
3.2.2 The Laplace transform	of Ele- mental functions.						
3.2.3 The inverse Laplace tra	nsform.						
3.2.4 Properties of the Laplac	e transform.						
3.2.4.1 Linearity.							
3.2.4.2 Escalation.							
3.2.4.3 Behavior when s ∞ .							
3.2.4.4 Time and frequency tr							
3.2.4.5 Transform of periodic							
3.2.4.6 Derivatives and integr	als of the Laplace Transform.						
3.2.4.7 Initial and Final Value	Theorem.						
3.2.4.8 The convolution theor							
3.2.5 Applications to calculate							
	e-Invariant Linear Differential Equations.						
3.2.7 Applications solvingTime-Variant Linear Differential Equations.							
3.2.8 Applications solving Integral Equations.							
Readings and other	It is recommended to read the topics suggested in the bibliography.						
resources	Perform application exercises.						
Teaching Methodologies	It will be taught by expository sessions by the teacher.						
Learning Activities	Research work, exercises done in class and tasks from the students are intended to						
	broaden and deepen the themes and topics of the course.						

4. The Z Transfor	rm. Properties	s and Applica	tions.										11 h	ours
	The student	will develop	and	obtain	the 2	Z transform	n of	discrete	signals,	as	well	as	utilizing	their
Objective:	properties.													
4.1 Background.														
4.1.1 Series.														
4.1.2 Convergence	ce and Radiu	s of Converge	ence.											
4.2 The Z Transfe	orm.													
4.3 The Z Transfe	orm of Eleme	ntal Function	s.											
4.4 Properties of	the Z Transfo	orm.												
4.4.1 Linearity.														
4.4.2 Multiplication	on by a ^k .													
4.4.3 The Transla	ation Theoren	า.												
4.4.4 Complex Tr	anslational T	heorem.												
4.4.5 Initial and F	inal Value Th	eorem.												
4.5 Solution of dif	fferential equa	ations.												
Readings and of	ther	It is recomme	ended	to read	d the t	opics sugge	este	d in the b	ibliograpł	ıy.				
resources		Perform appl	icatio	n exerc	ises.									
Teaching Metho	dologies	It will be taug	ht by	exposi	tory se	essions by t	he t	eacher.						
Learning Activit	ies	Research wo	rk, ex	ercises	done	in class an	d ta	sks from	the stude	ents	are in	teno	ded to	
		broaden and	deep	en the	theme	s and topic	s of	the cours	e.					

E) TEACHING AND LEARNING METHODOLOGIES

a) The subjects are presented with traditional expositions.

b) In some sessions a general problem will be presented to the student and he will have to develop the solution analytically, and show some of their applications to related problems in engineering.

c) In other sessions a specific problem will be pose, and students will develop the solution analytically.

d) Continuously tasks will be asked that involve solving engineering problems.

F) EVALUATION CRITERIA:

Evaluation:	Schedule	Suggested Form of Evaluation and weighing	Topics
1st. Partial Evaluation	16 sessions	Exam 90% , Tasks10%	1 y 2
2nd Partial Evaluation	16 sessions	Exam 90% , Tasks 10%	3
3rd. Partial Evaluation	16 sessions	Exam 90% , Tasks 10%	4
Final Ordinary Evaluation		100% (Average of the Partial Evaluations)	
Other activities:			
Extraordinary Exam	Week 17 of the semester in course	Exam 100%	Topics 100%
Title Exam	According to the schedule of the School Secretary	Exam 100%	Topics 100%
Regularization Exam	According to the schedule of the School Secretary	Exam 100%	Topics 100%

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main Books

- 1. Hwei P. Hsu, Señales y Sistemas, 2a Edición, Mcgraw-Hill Interamericana, 2003.
- 2. Pablo Alvarado Moya, Señales y Sistemas. Fundamentos Matemáticos, Ediciones Centro de Desarrollo de Material Bibliografico, 2008.
- 3. B. P. Lathi, Linear Systems and Signals, 2a Edición, Oxford University Press, 2004.
- 4. Phil Dyke, An Introduction to Laplace Transforms and Fourier Series, 2a Edición, Springer Undergraduate Mathematics Series, 2014.
- 5. David W. Kammler, A First Course in Fourier Analysis, Cambridge University Press, 2007.
- 6. Alan V. Oppenheim, Alan S. Willsky, S. Hamid Nawab, Señales y sistemas, 2a Edición, Pearson Educación, 1998.

Complementary Books

1. Elias M. Stein y Rami Shakarchi, Fourier Analysis: An Introduction, Princeton University Press, 2003.

- 2. Won Y. Yang, Tae G. Chang, Ik H. Song, Yong S. Cho, Jun Heo, Won G. Jeon, Jeong W. Lee, Jae K. Kim, Signals and Systems with MATLAB, Springer-Verlag Berlin Heidelberg 2009.
- 3. Ogata, K., Ingeniería de Control Moderna. 5a Edición. McGraw-Hill. 2010.
- 4. Kuo B.C., Sistemas de Control Automático, 7a Edición, Prentice-Hall, 1996.
- 5. Dorf R. C., Bishop R. H., Sistemas de control moderno, 10a Edición, Pearson Educación, 2005.
- 6. Ogata, K., Sistemas de Control en Tiempo Discreto. 2ª. Edición. Prentice-Hall Inc. 1996.

Internet Links