

A) COURSE

Course Id:	Course
5982	Control Engineering II

Class Hours per Week	Lab hours per week	k Complementary Credits		Total hour
		practices		course
3	2	3	8	48 theroy
				32 practice

B) GENERAL COURSE INFORMATION

	EE	ME	MME	EME	MTE
	(IEA)	(IM)	(IMA)	(IME)	(IMT)
Level:	IX				VII
Course Type	Required				Required
(Required/Elective)					
Prerequisite	Control Engineering				Control
Course:	l and				Engineering I and
	Microcontrollers				Microcontrollers
CACEI	IA				IA
Classification:					

C) COURSE OBJECTIVE

At the end of the course, the student will be capable of:

Known as the digital computers can be use to process control in real time.

Apply the Z transform to analyze data systems sampled.

Design digital controllers to obtain a good dynamic response using sampled signals and quantized in amplitude.

Program and/or adjust control algorithms on a digital device (computer, microcontrollers, processor, signal digital, FPGA, etc.) for handling a real time process improving its performance.

D) TOPICS (CONTENTS AND METHODOLOGY)

1. Introduction t	o the control systems	3 hours
Specific	Known terminology necessary that it uses in this subject and the elements as shape the control	
Objective:	systems highlighting those of digital type or computer.	
1.1. Contro	ol systems.	
1.2. Contro	bl by computer.	
1.3. Requi	1.3. Requirements of the control by computer.	
1.4. Hardv	vare	
1.5. Softw	are.	
1.6. Senso	Drs.	

Readings and other resources	Readings to investigation of concepts, as well as to complement and strengthen the topics discussed in class.
Teaching methods	Exhibition topics by teacher and / or students; use of some didactic techniques like teamwork, learning based in problems and/or projects; development of lab practices according topics covered in class.
Learning activities	Presentation of topics, analysis and modeling principles outlined thereof, numerical exercises, discussion of results and homework, partial exams and lab practices.

2 Sampled data systems

2. Sampled data	a systems	4 hours
Specific	That the student identifies the characteristics of the discrete-time systems and appl	y Sampling
Objective:	theorem.	
2.1 Introd	luction.	
2.2 Analy	vsis of the sampler and holder.	
2.3 Samp	pling theorem.	

- 2.4 Spectrum of a sampled signal and the "aliasing".2.5 Choice of sampling period.

2.0 010100 01 5011101119	
Readings and other	Readings to investigation of concepts, as well as to complement and strengthen the topics
resources	discussed in class.
Teaching methods	Exhibition topics by teacher and / or students; use of some didactic techniques like teamwork, learning based in problems and/or projects; development of lab practices according topics covered in class.
Learning activities	Presentation of topics, analysis and modeling principles outlined thereof, numerical exercises, discussion of results and homework, partial exams and lab practices.

3 7 transform and discrete systems

3. Z transform and discrete s	ystems	10 hours
Specific That the stud	dent analyzes the characteristics of the discrete-time systems.	
Objective:		
3.1 Discrete-time systems.		
3.2 Z transform and its pro	perties.	
3.3 Z inverse transform.		
3.4 Pulse transfer function		
3.5 Discretization of contin	uous systems represented by differential equations.	
3.6 Block Diagrams.		
3.7 State variables and eq	uations of state.	
-		
Readings and other	Readings to investigation of concepts, as well as to complement and strengthen the	he topics
resources	discussed in class.	-
Teaching methods	Exhibition topics by teacher and / or students; use of some didactic techniques like	e teamwork,
	learning based in problems and/or projects; development of lab practices accordir	ng topics
	covered in class.	
Learning activities	Presentation of topics, analysis and modeling principles outlined thereof,	, numerical
-	exercises, discussion of results and homework, partial exams and lab practices.	

4. Introduction t	o systems identification	6 hours
Specific	That the student interprets the basics of system identification.	
Objective:		
4.1 Introduc	tion.	
4.2 Identifying of static and dynamic systems.		
4.3 System identification least squares.		
4.4 Recursive Least Squares.		

Readings and other resources	Readings to investigation of concepts, as well as to complement and strengthen the topics discussed in class.
Teaching methods	Exhibition topics by teacher and / or students; use of some didactic techniques like teamwork, learning based in problems and/or projects; development of lab practices according topics covered in class.
Learning activities	Presentation of topics, analysis and modeling principles outlined thereof, numerical exercises, discussion of results and homework, partial exams and lab practices.

5. Transitory res	sponse analysis of the state error and stability of data systems.	12 hours
Specific	The student will know the differences between temporal response of a continuous-time student will know the differences between temporal response of a continuous-time student will know the differences between temporal response of a continuous-time student will know the differences between temporal response of a continuous-time student will know the differences between temporal response of a continuous-time student will know the differences between temporal response of a continuous-time student will know the differences between temporal response of a continuous-time student will know the differences between temporal response of a continuous-time student will know the differences between temporal response of a continuous-time student will know the differences between temporal response of a continuous-time student will know temporal response of a continuous-temporal response o	system and
Objective:	discrete time and the stability criteria for the latter type of system	

5.1 Step response.

5.2 Compare the time response of a sampled data system and a continuous time.

5.3 Correspondence between the plane s and the plane z.

5.4 Jury`s stability criterion.

5.5 Analysis of steady-state error.

Readings and other	Readings to investigation of concepts, as well as to complement and strengthen the topics
resources	discussed in class.
Teaching methods	Exhibition topics by teacher and / or students; use of some didactic techniques like teamwork, learning based in problems and/or projects; development of lab practices according topics covered in class.
Learning activities	Presentation of topics, analysis and modeling principles outlined thereof, numerical exercises, discussion of results and homework, partial exams and lab practices.

6. Design of digital control systems			13 hours		
Specific	That the st	udent defines the characteristics of the feedback control systems design, type digita	Ι.		
Objective:					
6.1 Specifications of the control system.					
6.2 Controller design by Ragazzini method					
6.3 Design of phase delay controllers, phase lead and phase delay-lead.					
6.4 Design of PID controllers.					
6.5 Tuning of PID controllers.					
6.6 Rules of Ziegler-Nichols.					
6.7 Realization of digital controllers.					
6.8 Design by pole placement.					
6.9 Programmation of a controller in a digital device.					
Readings and	other	Readings to investigation of concepts, as well as to complement and strengthen the top	pics discussed		
resources		in class.			
Teaching met	hods	Exhibition topics by teacher and / or students; use of some didactic techniques like tear	mwork, learning		
		based in problems and/or projects; development of lab practices according topics cove	red in class.		
Learning activ	vities	Presentation of topics, analysis and modeling principles outlined thereof, numer	ical exercises,		
		discussion of results and homework, partial exams and lab practices.			

E) TEACHING AND LEARNING METHODOLOGIES

- In class they will develop individually and team exercises topics to promote abstract and analytical reasoning.
- Some teaching techniques that encourage meaningful learning, in some of the topics of the course are used.

- Management, search and interpreting of information related to the topics will be promoted.
- The use of ICTs will be promoted through homework or projects.
- The use of lab will be promoted like an experimentation tool and comparison of the concepts covered in the course.

F) EVALUATION CRITERIA

- 1. It will perform 3 partial exams with maximum duration of 1 hour. These exams represent 80% of the partial grade. Each exam will focus on the topics covered in the period. The exams will have a theory part and other of problems.
- 2. It will assign compulsory homework that students must deliver in the date stipulated.
- 3. The final grade will be integrated to the next way: Final grade = (sum of partial grades)/3.
- 4. The date of the exams will accord in class according with the specified dates by school secretary of the college.

Suggested Form of Evaluation and	Schedule	Include	Weighing
Eirst partial axam			
Written exam: 80%			
Homeworks simulations didactic	Session 16	Topics 1 v 2	33 %
tochniques: 20%	36331011 10	TOPICS T y Z	55 70
Total 100%			
Second nartial exam			
Written exam: 80%			
Homeworks simulations didactic	Session 32	Topics 3 v 4	33%
techniques: 20%	00001011 02		0070
Total 100%			
Third partial exam			
Written exam: 80%	Session 48	Topics 5 v 6	33 %
Homeworks, projects: 20%		- F , -	
Total 100%			
Total	16 weeks		
	(48 Sessions)		
Ordinary exam	It is the average partial qualifications.		
Lab	Prove necessary to pass the course		
Extraordinary exam	Written theoretical exam of all units 100%		
Title exam	Written theoretical exam of all units 100%		
Regularization exam	Written theoretical exam of all units 100%		

G) BIBLIOGRAPHY AND ELECTRONIC RESOURCES

Main Books

Digital control system analysis and design C. Phillips, H. T. Nagle, A. Chakrabortty Fourth edition Pearson 2015

Microcontroller based applied digital control D. Ibrahim Wiley 2006

An Introduction to identification J. P. Norton Dover 2009

Complementary Books

Control de sistemas discretos O. Reinoso, J.M.S. Zúñiga, R.A. Santoja, F. Torres McGraw-Hill 2004

Digital control systems: design, identification and implementation loan Doré Landau, Gianluca Zito Springer 2006

Computer-controlled systems. Theory and design K.J. Astrom y B. Wittenmark Prentice Hall 1997

Internet Links

http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-30-feedback-control-systems-fall-2010/